Complex network topologies and synchronization

被引:0
|
作者
Checco, Paolo [1 ]
Biey, Mario
Vattay, Gabor
Kocarev, Ljupco
机构
[1] Politecn Torino, Dept Elect, Turin, Italy
[2] Collegium Budapest, Inst Adv Studies, Budapest, Hungary
[3] Univ Calif San Diego, Inst Nonlinear Sci, San Diego, CA 92103 USA
关键词
D O I
10.1109/ISCAS.2006.1693166
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Synchronization in networks with different topologies is studied. We show that for a large class of oscillators there exist two classes of networks; class-A: networks for which the condition of stable synchronous state is sigma gamma(2) > a, and class-B: networks for which this condition reads gamma(N)/gamma(2) < b, where a and b are constants that depend on local dynamics, synchronous state and the coupling matrix, but not on the Laplacian matrix of the graph describing the topology of the network. Here gamma(1) = 0 < gamma(2) <= ...gamma(N) are the eigenvalues of the Laplacian matrix, where N is the order of the graph. Synchronization in networks whose topology is described by classical random graphs and power-law random graphs when N -> infinity is investigated in detail.
引用
收藏
页码:2641 / 2644
页数:4
相关论文
共 50 条
  • [1] Evolving topologies for Network Synchronization
    DeLellis, Pietro
    diBernardo, Mario
    Garofalo, Franco
    Porfiri, Maurizio
    [J]. 2010 COMPLEXITY IN ENGINEERING: COMPENG 2010, PROCEEDINGS, 2010, : 115 - 117
  • [2] SYNCHRONIZATION TECHNIQUES FOR VARIOUS SWITCHING NETWORK TOPOLOGIES
    HARRINGTON, EA
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 1978, 26 (06) : 925 - 932
  • [3] Evolving enhanced topologies for the synchronization of dynamical complex networks
    Gorochowski, Thomas E.
    di Bernardo, Mario
    Grierson, Claire S.
    [J]. PHYSICAL REVIEW E, 2010, 81 (05)
  • [4] Coupled semiconductor laser network topologies for efficient synchronization
    Bourmpos, Michail
    Argyris, Apostolos
    Syvridis, Dimitris
    [J]. PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXIII, 2015, 9357
  • [5] Cluster Synchronization of a Nonlinear Network With Fixed and Switching Topologies
    Zhai, Shidong
    Wang, Xin
    Zheng, Yuanshi
    [J]. IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 3752 - 3761
  • [6] PID Control for Synchronization of Complex Dynamical Networks With Directed Topologies
    Gu, Haibo
    Liu, Peng
    Lu, Jinhu
    Lin, Zongli
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (03) : 1334 - 1346
  • [7] Network synchronization:: optimal and pessimal scale-free topologies
    Donetti, Luca
    Hurtado, Pablo I.
    Munoz, Miguel A.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (22)
  • [8] Synchronization in a network of delay coupled maps with stochastically switching topologies
    Nag, Mayurakshi
    Poria, Swarup
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 91 : 9 - 16
  • [9] Speed of complex network synchronization
    C. Grabow
    S. Grosskinsky
    M. Timme
    [J]. The European Physical Journal B, 2011, 84 : 613 - 626
  • [10] Speed of complex network synchronization
    Grabow, C.
    Grosskinsky, S.
    Timme, M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (04): : 613 - 626