An Optimized Quantitative Argumentation Debate Model for Fraud Detection in E-Commerce Transactions

被引:5
|
作者
Chi, Haixiao [1 ]
Lu, Yiwei [2 ]
Liao, Beishui [3 ]
Xu, Liaosa [4 ]
Liu, Yaqi [4 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou 310028, Peoples R China
[2] Zhejiang Univ, Ctr Study Language & Cognit, Hangzhou 310028, Peoples R China
[3] Zhejiang Univ, Inst Log & Cognit, Hangzhou 310028, Peoples R China
[4] Alibaba Grp, Hangzhou 518860, Peoples R China
关键词
Semantics; Intelligent systems; Heuristic algorithms; Computational modeling; Artificial intelligence; Task analysis; Knowledge representation; Artificial Intelligence; Computing Methodologies; Knowledge Representation Formalisms and Methods;
D O I
10.1109/MIS.2021.3071751
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we tackle the problem of efficiently recomputing the skeptical acceptance of dynamic argumentation frameworks under the well-known preferred semantics. We discuss an incremental algorithmic solution whose main idea is that of exploiting the initial knowledge (including the update to perform) in order to identify a potentially small portion of the argumentation framework. Such a portion is sufficient to compute the skeptical preferred acceptance of a goal argument w.r.t. the whole updated framework. We also discuss on how similar ideas extend to more general argumentation frameworks.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 50 条
  • [1] Improved Fraud Detection in e-Commerce Transactions
    Shaji, Jisha
    Panchal, Dakshata
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS, COMPUTING AND IT APPLICATIONS (CSCITA), 2017, : 121 - 126
  • [2] Fraud risks in e-commerce transactions
    Wopperer, W
    [J]. GENEVA PAPERS ON RISK AND INSURANCE-ISSUES AND PRACTICE, 2002, 27 (03): : 383 - 394
  • [3] Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model
    Carta, Salvatore
    Fenu, Gianni
    Recupero, Diego Reforgiato
    Saia, Roberto
    [J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2019, 46 : 13 - 22
  • [4] Fraud Detection in E-commerce Transactions: A Machine Learning Perspective
    Manoharan, Geetha
    Ali, S. Dada Noor Hayath
    Sathe, Manoj
    Karthik, A.
    Nagpal, Amandeep
    Sidana, Ajay
    [J]. 2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [5] A Multiperspective Fraud Detection Method for Multiparticipant E-Commerce Transactions
    Yu, Wangyang
    Wang, Yadi
    Liu, Lu
    An, Yisheng
    Yuan, Bo
    Panneerselvam, John
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (02) : 1564 - 1576
  • [6] Fraud Analysis and Prevention in e-Commerce Transactions
    Caldeira, Evandro
    Brandao, Gabriel
    Pereira, Adriano C. M.
    [J]. 2014 9TH LATIN AMERICAN WEB CONGRESS (LA-WEB), 2014, : 42 - 49
  • [7] Machine Learning Pipeline for Fraud Detection and Prevention in E-Commerce Transactions
    Jhangiani, Resham
    Bein, Doina
    Verma, Abhishek
    [J]. 2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2019, : 135 - 140
  • [8] Fraud Detection in E-Commerce
    Alqethami, Sara
    Almutanni, Badriah
    AlGhamdi, Manal
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (06): : 200 - 206
  • [9] A Scalable Approach for Fraud Detection in Online E-Commerce Transactions with Big Data Analytics
    Zhou, Hangjun
    Sun, Guang
    Fu, Sha
    Jiang, Wangdong
    Xue, Juan
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (01): : 179 - 192
  • [10] Behavioral graph fraud detection in E-commerce
    Yin, Hang
    Zhang, Zitao
    Wang, Zhurong
    Ozyurt, Yilmazcan
    Liang, Weiming
    Dong, Wenyu
    Zhao, Yang
    Shan, Yinan
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 769 - 776