Anthropomorphizing the Mouse Cardiac Action Potential via a Novel Dynamic Clamp Method

被引:17
|
作者
Ahrens-Nicklas, Rebecca C. [1 ,2 ]
Christini, David J. [1 ,2 ]
机构
[1] Weill Cornell Med Coll, Greenberg Div Cardiol, New York, NY USA
[2] Weill Cornell Med Coll, Dept Physiol Biophys & Syst Biol, New York, NY USA
基金
美国国家卫生研究院;
关键词
LONG-QT SYNDROME; HUMAN VENTRICULAR TISSUE; MATHEMATICAL-MODEL; MYOCYTES; CHANNELS; AFTERDEPOLARIZATIONS; ELECTROPHYSIOLOGY; PROLONGATION; MECHANISMS; SIMULATION;
D O I
10.1016/j.bpj.2009.09.002
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Interspecies differences can limit the translational value of excitable cells isolated from model organisms. It can be difficult to extrapolate from a drug- or mutation-induced phenotype in mice to human pathophysiology because mouse and human cardiac electrodynamics differ greatly. We present a hybrid computational-experimental technique, the cell-type transforming clamp, which is designed to overcome such differences by using a calculated compensatory current to convert the macroscopic electrical behavior of an isolated cell into that of a different cell type. We demonstrate the technique's utility by evaluating drug arrhythmogenicity in murine cardiomyocytes that are transformed to behave like human myocytes. Whereas we use the cell-type transforming clamp in this work to convert between mouse and human electrodynamics, the technique could be adapted to convert between the action potential morphologies of any two cell types of interest.
引用
收藏
页码:2684 / 2692
页数:9
相关论文
共 50 条
  • [1] Modeling the Dynamic Currents Recorded under Action Potential-Clamp in Cardiac Myocytes
    Izu, Leighton T.
    Banyasz, Tamas
    Chen-Izu, Ye
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 528A - 528A
  • [2] Development, Implementation and Testing of a Multicellular Dynamic Action Potential Clamp Simulator for Drug Cardiac Safety Assessment
    Camporesi, Maria
    Bartolucci, Chiara
    Lei, Chon Lok
    Mirams, Gary R.
    de Boer, Teun P.
    Severi, Stefano
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [3] Combined action potential- and dynamic-clamp for accurate computational modelling of the cardiac IKr current
    Bartolucci, Chiara
    Altomare, Claudia
    Bennati, Marco
    Furini, Simone
    Zaza, Antonio
    Severi, Stefano
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2015, 79 : 187 - 194
  • [4] Investigating Ion Channel Diseases With Dynamic Action Potential Clamp
    Mann, Stefan A.
    Hill, Adam
    Vandenberg, Jamie I.
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 259A - 259A
  • [5] Combined Action Potential- and Dynamic-Clamp for Accurate Computational Modeling of the Kinetics of Cardiac IKr Current
    Bartolucci, Chiara
    Altomare, Claudia
    Bennati, Marco
    Furini, Simone
    Zaza, Antonio
    Severi, Stefano
    2013 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2013, 40 : 835 - 838
  • [6] Exploring the Coordination of Cardiac Ion Channels With Action Potential Clamp Technique
    Horvath, Balazs
    Szentandrassy, Norbert
    Dienes, Csaba
    Kovacs, Zsigmond M.
    Nanasi, Peter P.
    Chen-Izu, Ye
    Izu, Leighton T.
    Banyasz, Tamas
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [7] CARDIAC ACTION POTENTIAL (FROG AURICLE) INTERPRETED FROM VOLTAGE CLAMP DATA
    ROUGIER, O
    VASSORT, G
    GARNIER, D
    JOURNAL DE PHYSIOLOGIE, 1968, S 60 : 534 - &
  • [8] Estimating neuronal conductance model parameters using dynamic action potential clamp
    Deerasooriya, Y.
    Berecki, G.
    Kaplan, D.
    Forster, I. C.
    Halgamuge, S.
    Petrou, S.
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 325
  • [9] HERG channel (dys)function revealed by "dynamic action potential clamp" technique
    Berecki, G
    Zegers, JG
    Verkerk, AO
    Bhuiyan, ZA
    de Jonge, B
    Veldkamp, MW
    Wilders, R
    van Ginneken, ACG
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 133A - 133A
  • [10] HERG channel (dys)function revealed by dynamic action potential clamp technique
    Berecki, G
    Zegers, JG
    Verkerk, AO
    Bhuiyan, ZA
    de Jonge, B
    Veldkamp, MW
    Wilders, R
    van Ginneken, ACG
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 566 - 578