Parallax: Visualizing and Understanding the Semantics of Embedding Spaces via Algebraic Formulae

被引:0
|
作者
Molino, Piero [1 ]
Wang, Yang [2 ]
Zhang, Jiawei [3 ]
机构
[1] Uber AI Labs, San Francisco, CA 94107 USA
[2] Uber Technol Inc, San Francisco, CA USA
[3] Facebook, Menlo Pk, CA USA
来源
PROCEEDINGS OF THE 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, (ACL 2019) | 2019年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Embeddings are a fundamental component of many modern machine learning and natural language processing models. Understanding them and visualizing them is essential for gathering insights about the information they capture and the behavior of the models. In this paper, we introduce Parallax(1), a tool explicitly designed for this task. Parallax allows the user to use both state-of-the-art embedding analysis methods (PCA and t-SNE) and a simple yet effective task-oriented approach where users can explicitly define the axes of the projection through algebraic formulae. In this approach, embeddings are projected into a semantically meaningful subspace, which enhances interpretability and allows for more fine-grained analysis. We demonstrate(2) the power of the tool and the proposed methodology through a series of case studies and a user study.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 50 条
  • [1] EMBEDDING SEMI-ALGEBRAIC SPACES
    ROBSON, R
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (03) : 365 - 370
  • [2] α-modulation spaces (I) scaling, embedding and algebraic properties
    Han, Jinsheng
    Wang, Baoxiang
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (04) : 1315 - 1373
  • [3] Understanding Game Semantics Through Coherence Spaces
    Calderon, Ana C.
    McCusker, Guy
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2010, 265 : 231 - 244
  • [4] A PROCESS ALGEBRAIC SEMANTICS FOR STATECHARTS VIA STATE REFINEMENT
    USELTON, AC
    SMOLKA, SA
    PROGRAMMING CONCEPTS, METHODS AND CALCULI, 1994, 56 : 267 - 286
  • [5] Multimodal Deep Embedding via Hierarchical Grounded Compositional Semantics
    Zhuang, Yueting
    Song, Jun
    Wu, Fei
    Li, Xi
    Zhang, Zhongfei
    Rui, Yong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (01) : 76 - 89
  • [6] Embedding semantics in human resources management automation via SQL
    Eufemia Tinelli
    Simona Colucci
    Francesco M. Donini
    Eugenio Di Sciascio
    Silvia Giannini
    Applied Intelligence, 2017, 46 : 952 - 982
  • [7] Embedding semantics in human resources management automation via SQL
    Tinelli, Eufemia
    Colucci, Simona
    Donini, Francesco M.
    Di Sciascio, Eugenio
    Giannini, Silvia
    APPLIED INTELLIGENCE, 2017, 46 (04) : 952 - 982
  • [8] Towards an Algebraic Approach for Cover Based Rough Semantics and Combinations of Approximation Spaces
    Mani, A.
    ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS, 2009, 5908 : 77 - 84
  • [9] Strand Spaces with Choice via a Process Algebra Semantics
    Yang, Fan
    Escobar, Santiago
    Meadows, Catherine
    Meseguer, Jose
    Santiago, Sonia
    PROCEEDINGS OF THE 18TH INTERNATIONAL SYMPOSIUM ON PRINCIPLES AND PRACTICE OF DECLARATIVE PROGRAMMING (PPDP 2016), 2016, : 76 - 89
  • [10] Estimating the Semantics via Sector Embedding for Image-Text Retrieval
    Wang, Zheng
    Gao, Zhenwei
    Han, Mengqun
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10342 - 10353