Shallow Convolutional Neural Networks for Human Activity Recognition Using Wearable Sensors

被引:68
|
作者
Huang, Wenbo [1 ]
Zhang, Lei [1 ]
Gao, Wenbin [1 ]
Min, Fuhong [1 ]
He, Jun [2 ]
机构
[1] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
基金
美国国家科学基金会;
关键词
Convolutional neural networks (CNNs); cross-channel communication; deep learning; human activity recognition (HAR); sensor;
D O I
10.1109/TIM.2021.3091990
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to rapid development of sensor technology, human activity recognition (HAR) using wearable inertial sensors has recently become a new research hotspot. Deep learning, especially convolutional neural network (CNN) that can automatically learn intricate activity features have gained a lot of attention in ubiquitous HAR task. Most existing CNNs process sensor input by extracting channel-wise features, and the information from each channel can be separately propagated in a hierarchical way from lower layers to higher layers. As a result, they typically overlook information exchange among channels within the same layer. In this article, we first propose a shallow CNN that considers cross-channel communication in HAR scenario, where all channels in the same layer have a comprehensive interaction to capture more discriminative features of sensor input. One channel can communicate with all other channels by graph neural network to remove redundant information accumulated among channels, which is more beneficial for deploying lightweight deep models. Extensive experiments are conducted on multiple benchmark HAR datasets, namely UCI-HAR, OPPORTUNITY, PAMAP2 and UniMib-SHAR, which indicates that the proposed method enables shallower CNNs to aggregate more useful information, and surpasses baseline deep networks and other competitive methods. The inference speed is evaluated via deploying the HAR systems on an embedded system.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Human Activity Recognition using Wearable Sensors by Deep Convolutional Neural Networks
    Jiang, Wenchao
    Yin, Zhaozheng
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1307 - 1310
  • [2] Human activity recognition using wearable sensors by heterogeneous convolutional neural networks
    Han, Chaolei
    Zhang, Lei
    Tang, Yin
    Huang, Wenbo
    Min, Fuhong
    He, Jun
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
  • [3] Convolutional Neural Networks for Human Activity Recognition Using Multi-location Wearable Sensors
    Deng S.-Z.
    Wang B.-T.
    Yang C.-G.
    Wang G.-R.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (03): : 718 - 737
  • [4] Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors
    Vuong, Thi Hong
    Doan, Tung
    Takasu, Atsuhiro
    SENSORS, 2023, 23 (24)
  • [5] Deformable Convolutional Networks for Multimodal Human Activity Recognition Using Wearable Sensors
    Xu, Shige
    Zhang, Lei
    Huang, Wenbo
    Wu, Hao
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [6] Convolutional Neural Networks for Human Activity Recognition using Mobile Sensors
    Zeng, Ming
    Nguyen, Le T.
    Yu, Bo
    Mengshoel, Ole J.
    Zhu, Jiang
    Wu, Pang
    Zhang, Joy
    2014 6TH INTERNATIONAL CONFERENCE ON MOBILE COMPUTING, APPLICATIONS AND SERVICES (MOBICASE), 2014, : 197 - 205
  • [7] Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning
    Link, Johannes
    Perst, Timur
    Stoeve, Maike
    Eskofier, Bjoern M.
    SENSORS, 2022, 22 (07)
  • [8] Layer-Wise Training Convolutional Neural Networks With Smaller Filters for Human Activity Recognition Using Wearable Sensors
    Tang, Yin
    Teng, Qi
    Zhang, Lei
    Min, Fuhong
    He, Jun
    IEEE SENSORS JOURNAL, 2021, 21 (01) : 581 - 592
  • [9] Human Action Recognition using Wearable Sensors and Neural Networks
    Karungaru, Stephen
    2015 10TH ASIAN CONTROL CONFERENCE (ASCC), 2015,
  • [10] Distributed Convolutional Neural Networks for Human Activity Recognition in Wearable Robotics
    Hughes, Dana
    Correll, Nikolaus
    DISTRIBUTED AUTONOMOUS ROBOTIC SYSTEMS, 2019, 6 : 619 - 631