Geometric Properties of the Adaptive Delaunay Tessellation

被引:0
|
作者
Bobach, Tom [1 ]
Constantiniu, Alexandru
Steinmann, Paul
Umlauf, Georg [1 ]
机构
[1] Univ Kaiserslautern, Dept Comp Sci, D-67663 Kaiserslautern, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, the Adaptive Delaunay Tessellation (ADT) was introduced in the context of computational mechanics as a tool to support Voronoi-based nodal integration schemes in the finite element method. While focusing on applications in mechanical engineering, the former presentation lacked rigorous proofs for the claimed geometric properties of the ADT necessary for the computation of the nodal integration scheme. This paper gives pending proofs for the three main claims which are uniqueness of the ADT, connectedness of the ADT, and coverage of the Voronoi tiles by adjacent ADT tiles. Furthermore, this paper provides a critical assessment of the ADT for arbitrary point sets.
引用
收藏
页码:41 / +
页数:2
相关论文
共 50 条
  • [1] The Adaptive Delaunay Tessellation: A neighborhood covering meshing technique
    Constantiniu, Alexandru
    Steinmann, Paul
    Bobach, Tom
    Farin, Gerald
    Umlauf, Georg
    COMPUTATIONAL MECHANICS, 2008, 42 (05) : 655 - 669
  • [2] The Adaptive Delaunay Tessellation: a neighborhood covering meshing technique
    Alexandru Constantiniu
    Paul Steinmann
    Tom Bobach
    Gerald Farin
    Georg Umlauf
    Computational Mechanics, 2008, 42 : 655 - 669
  • [3] The β-Delaunay tessellation II: the Gaussian limit tessellation
    Gusakova, Anna
    Kabluchko, Zakhar
    Thale, Christoph
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [4] The β-Delaunay tessellation IV: Mixing properties and central limit theorems
    Gusakova, Anna
    Kabluchko, Zakhar
    Thaele, Christoph
    STOCHASTICS AND DYNAMICS, 2023, 23 (03)
  • [5] Cardinality of Simplexes in a Delaunay Tessellation
    Hearne, Leonard B.
    PROCEEDINGS OF THE ITI 2012 34TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES (ITI), 2012, : 201 - 205
  • [6] The Delaunay tessellation in hyperbolic space
    Deblois, Jason
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 164 (01) : 15 - 46
  • [7] ON SORTING TRIANGLES IN A DELAUNAY TESSELLATION
    DEFLORIANI, L
    FALCIDIENO, B
    NAGY, G
    PIENOVI, C
    ALGORITHMICA, 1991, 6 (04) : 522 - 532
  • [8] Graph theoretic properties of networks formed by the Delaunay tessellation of protein structures
    Taylor, TJ
    Vaisman, II
    PHYSICAL REVIEW E, 2006, 73 (04)
  • [9] Investigations on the polygonal finite element method: Constrained adaptive Delaunay tessellation and conformal interpolants
    Kraus, Markus
    Rajagopal, Amirtham
    Steinmann, Paul
    COMPUTERS & STRUCTURES, 2013, 120 : 33 - 46
  • [10] Fast and robust Delaunay tessellation in periodic domains
    Thompson, KE
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 55 (11) : 1345 - 1366