Superconvergent Recovery of Raviart-Thomas Mixed Finite Elements on Triangular Grids

被引:9
|
作者
Bank, Randolph E. [1 ]
Li, Yuwen [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Superconvergence; Mildly structured grids; Mixed methods; Raviart-Thomas elements; Second order elliptic equations; 65N30; 65N50; POSTERIORI ERROR ESTIMATORS; PATCH RECOVERY; EXTERIOR CALCULUS; GRADIENT RECOVERY; CONVERGENCE; OPTIMALITY;
D O I
10.1007/s10915-019-01068-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the second lowest order Raviart-Thomas mixed method, we prove that the canonical interpolant and finite element solution for the vector variable in elliptic problems are superclose in the H(mml:mspace width="0.166667em"mml:mspacedivmml:mspace width="0.166667em"mml:mspace)-norm on mildly structured meshes, where most pairs of adjacent triangles form approximate parallelograms. We then develop a family of postprocessing operators for Raviart-Thomas mixed elements on triangular grids by using the idea of local least squares fittings. Super-approximation property of the postprocessing operators for the lowest and second lowest order Raviart-Thomas elements is proved under mild conditions. Combining the supercloseness and super-approximation results, we prove that the postprocessed solution superconverges to the exact solution in the L2-norm on mildly structured meshes.
引用
收藏
页码:1882 / 1905
页数:24
相关论文
共 50 条