Adaptive smoothing of digital images: the R package adimpro

被引:0
|
作者
Polzehl, Joerg
Tabelow, Karsten
机构
[1] WIAS, Berlin, Germany
[2] MATHEON, Berlin, Germany
来源
JOURNAL OF STATISTICAL SOFTWARE | 2007年 / 19卷 / 01期
关键词
adaptive weights; local structure; propagation; separation; image processing; smoothing; R;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Digital imaging has become omnipresent in the past years with a bulk of applications ranging from medical imaging to photography. When pushing the limits of resolution and sensitivity noise has ever been a major issue. However, commonly used non-adaptive filters can do noise reduction at the cost of a reduced effective spatial resolution only. Here we present a new package adimpro for R, which implements the propagation-separation approach by (Polzehl and Spokoiny 2006) for smoothing digital images. This method naturally adapts to different structures of different size in the image and thus avoids oversmoothing edges and fine structures. We extend the method for imaging data with spatial correlation. Furthermore we show how the estimation of the dependence between variance and mean value can be included. We illustrate the use of the package through some examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Structural Adaptive Smoothing in Diffusion Tensor Imaging: The R Package dti
    Polzehl, Joerg
    Tabelow, Karsten
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2009, 31 (09): : 1 - 22
  • [2] AN ADAPTIVE SMOOTHING FILTER FOR URTURIP IMAGES
    MIGEON, B
    SERFATY, V
    GORKANI, M
    MARCHE, P
    [J]. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1995, 14 (06): : 762 - 765
  • [3] Adaptive spatial smoothing of fMRI images
    Yue, Yu
    Loh, Ji Meng
    Lindquist, Martin A.
    [J]. STATISTICS AND ITS INTERFACE, 2010, 3 (01) : 3 - 13
  • [4] Smoothing Spline ANOVA Models: R Package gss
    Gu, Chong
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 58 (05): : 1 - 25
  • [5] Adaptive smoothing of photon-counting images
    Seon, KI
    Yuk, IS
    Nam, UA
    Park, JH
    Lee, DH
    Moon, HK
    Jin, H
    Han, W
    Shinn, JH
    Kim, IJ
    Ryu, KS
    Min, KW
    Edelstein, J
    Korpela, E
    Nishikida, K
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (05) : 1270 - 1274
  • [6] AN ADAPTIVE FILTER FOR SMOOTHING NOISY RADAR IMAGES
    FROST, VS
    STILES, JA
    SHANMUGAM, KS
    HOLTZMAN, JC
    SMITH, SA
    [J]. PROCEEDINGS OF THE IEEE, 1981, 69 (01) : 133 - 135
  • [7] Adaptive smoothing of images with local weighted regression
    Levenson, MS
    Bright, DS
    Sethuraman, J
    [J]. STATISTICAL AND STOCHASTIC METHODS FOR IMAGE PROCESSING, 1996, 2823 : 85 - 99
  • [8] Iterative Bias Reduction Multivariate Smoothing in R: The ibr Package
    Cornillon, Pierre-Andre
    Hengartner, Nicolas
    Matzner-Lober, Eric
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (09):
  • [9] KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory
    Mazza, Angelo
    Punzo, Antonio
    McGuire, Brain
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2014, 58 (06): : 1 - 34
  • [10] coveR: an R package for processing digital cover photography images to retrieve forest canopy attributes
    Chianucci, Francesco
    Ferrara, Carlotta
    Puletti, Nicola
    [J]. TREES-STRUCTURE AND FUNCTION, 2022, 36 (06): : 1933 - 1942