ON PRIMITIVELY UNIVERSAL QUADRATIC FORMS

被引:6
|
作者
Budarina, N. [1 ]
机构
[1] Natl Univ Ireland, Dept Math, Maynooth, Kildare, Ireland
基金
爱尔兰科学基金会;
关键词
almost primitively universal quadratic forms; p-adic symbols; LATTICES;
D O I
10.1007/s10986-010-9076-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1999, Manjul Bhargava proved the Fifteen Theorem and showed that there are exactly 204 universal positive definite integral quaternary quadratic forms. We consider primitive representations of quadratic forms and investigate a primitive counterpart to the Fifteen Theorem. In particular, we give an efficient method for deciding whether a positive definite integral quadratic form in four or more variables with odd square-free determinant is almost primitively universal.
引用
收藏
页码:140 / 163
页数:24
相关论文
共 50 条
  • [1] On primitively universal quadratic forms
    N. Budarina
    Lithuanian Mathematical Journal, 2010, 50 : 140 - 163
  • [2] On locally primitively universal quadratic forms
    A. G. Earnest
    B. L. K. Gunawardana
    The Ramanujan Journal, 2021, 55 : 1145 - 1163
  • [3] On locally primitively universal quadratic forms
    Earnest, A. G.
    Gunawardana, B. L. K.
    RAMANUJAN JOURNAL, 2021, 55 (03): : 1145 - 1163
  • [4] Primitively universal quaternary quadratic forms
    Ju, Jangwon
    Kim, Daejun
    Kim, Kyoungmin
    Kim, Mingyu
    Oh, Byeong-Kweon
    JOURNAL OF NUMBER THEORY, 2023, 242 : 181 - 207
  • [5] Local criteria for universal and primitively universal quadratic forms
    Earnest, A. G.
    Gunawardana, B. L. K.
    JOURNAL OF NUMBER THEORY, 2021, 225 : 260 - 280
  • [6] ON PRIMITIVELY 2-UNIVERSAL QUADRATIC FORMS
    Budarina, N. V.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (03) : 435 - 458
  • [7] Primitively 2-universal senary integral quadratic forms
    Oh, Byeong-Kweon
    Yoon, Jongheun
    JOURNAL OF NUMBER THEORY, 2024, 264 : 148 - 183
  • [8] Universal quadratic forms
    Dickson, L. E.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) : 164 - 189
  • [9] Sails for universal quadratic forms
    Kala, Vitezslav
    Man, Siu Hang
    SELECTA MATHEMATICA-NEW SERIES, 2025, 31 (02):
  • [10] UNIVERSAL QUATERNARY QUADRATIC FORMS
    MORROW, DC
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (10) : 903 - 904