Free vibration analysis of non-uniform Bernoulli beam by using Laplace Adomian decomposition method

被引:4
|
作者
Lin, Ming-Xian [1 ]
Deng, Chih-Yi [1 ]
Chen, Cha'o-Kuang [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Mech Engn, 1 Daxue Rd, Tainan 70101, Taiwan
关键词
Laplace Adomian decomposition method; free vibration; Euler-Bernoulli beam; natural frequency; TRANSVERSE VIBRATIONS; END; CANTILEVER; MODEL;
D O I
10.1177/09544062221077830
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper discusses an investigation into the influence of the cone ratio and axial force on the vibration problem in a non-uniform cantilever Euler-Bernoulli beam. In the analysis, the governing equation for the non-uniform cantilever Euler-Bernoulli beam is solved using the Laplace Adomian decomposition method (LADM). The LADM is used to convert the governing equation into a characteristic equation of a non-uniform Euler-Bernoulli beam, and a simple calculation is performed to obtain the natural frequencies and corresponding modals. The obtained numerical results are verified using a comparison with the results reported in previous studies. The present study speeds up the convergent rate and the accuracy of calculation by comparing the results using the modified Adomian decomposition method (MADM) and differential transformation method (DTM). The main power and advantage of the LADM are providing an analytical approximation to a nonlinear differential equation without linearization, perturbation, approximation, and discretization, all of which lead to huge numerical computation. The numerical methods demonstrated that the natural frequency increases with increasing the rotating spring modulus and moving spring modulus, and the moving spring modulus has a greater influence on the natural frequency. The effects of the cone ratio and axial force are presented for non-uniform Euler-Bernoulli beams. The numerical results show that the LADM is a suitable technique for analyzing the behavioral characteristics of beams.
引用
收藏
页码:7068 / 7078
页数:11
相关论文
共 50 条
  • [1] Free Vibration of Non-Uniform Euler-Bernoulli Beams by the Adomian Modified Decomposition Method
    Lai, Hsin-Yi
    Chen, C. K.
    Hsu, Jung-Chang
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 34 (01): : 87 - 115
  • [2] Free Vibration Analysis of Non-uniform Thin Curved Arches and Rings Using Adomian Modified Decomposition Method
    Ahmad Shahba
    Reza Attarnejad
    Morteza Tavanaie Marvi
    Vista Shahriari
    [J]. Arabian Journal for Science and Engineering, 2012, 37 : 965 - 976
  • [3] Free Vibration Analysis of Non-uniform Thin Curved Arches and Rings Using Adomian Modified Decomposition Method
    Shahba, Ahmad
    Attarnejad, Reza
    Marvi, Morteza Tavanaie
    Shahriari, Vista
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2012, 37 (04): : 965 - 976
  • [4] Free vibration of non-uniform Euler-Bernoulli beams with general elastically end constraints using Adomian modified decomposition method
    Hsu, Jung-Chang
    Lai, Hsin-Yi
    Chen, C. K.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2008, 318 (4-5) : 965 - 981
  • [5] Vibration analysis of a uniform pre-twisted rotating Euler-Bernoulli beam using the modified Adomian decomposition method
    Adair, Desmond
    Jaeger, Martin
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2018, 23 (09) : 1345 - 1363
  • [6] Free vibration of the nonlinear pendulum using hybrid Laplace Adomian decomposition method
    Tsai, Pa-Yee
    Chen, Chao-Kuang
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (02) : 262 - 272
  • [7] An innovative eigenvalue problem solver for free vibration of Euler-Bernoulli beam by using the Adomian decomposition method
    Lai, Hsin-Yi
    Hsu, Jung-Chang
    Chen, Cha'o-Luang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3204 - 3220
  • [8] FREE VIBRATION ANALYSIS OF A BEAM ESCALONADA TIMOSHENKO NON-UNIFORM BEAM USING THE DIFFERENTIAL QUADRATURE METHOD
    Felix, Daniel H.
    Rossi, Raul E.
    Bambill, Diana V.
    [J]. REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2009, 25 (02): : 111 - 132
  • [9] Vibration Analysis of a Stepped Beam by Using Adomian Decomposition Method
    Mao, Qibo
    Nie, Yanping
    Zhang, Wei
    [J]. ADVANCES IN INTELLIGENT STRUCTURE AND VIBRATION CONTROL, 2012, 160 : 292 - 296
  • [10] SOLVING FREE VIBRATION OF STEPPED BEAM BY USING THE ADOMIAN DECOMPOSITION METHOD
    Farshidianfar, Anooshiravan
    Tabassian, Rassoul
    Khoee, Omid Kazemzadeh
    Noei, Sayed Javadorreza
    [J]. PROCEEDINGS OF THE ASME 10TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2010, VOL 4, 2010, : 263 - 270