Ambipolar Transport Compact Models for Two-Dimensional Materials Based Field-Effect Transistors

被引:3
|
作者
Yan, Zhaoyi [1 ]
Gou, Guangyang [1 ]
Ren, Jie [1 ]
Wu, Fan [1 ]
Shen, Yang [1 ]
Tian, He [1 ,2 ]
Yang, Yi [1 ,2 ]
Ren, Tian-Ling [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol, Beijing 100084, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Field-Effect Transistor (FET); compact model; ambipolar transport; Landauer formula; Pao-Sah model; virtual source; ULTRATHIN BLACK PHOSPHORUS; CARBON NANOTUBE FETS; VIRTUAL-SOURCE MODEL; PART I; DRIFT-DIFFUSION; SPACE CHARGE; SEMICONDUCTOR; SURFACE; PHYSICS; GAP;
D O I
10.26599/TST.2020.9010064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Three main ambipolar compact models for Two-Dimensional (2D) materials based Field-Effect Transistors (2D-FETs) are reviewed: (1) Landauer model, (2) 2D Pao-Sah model, and (3) virtual Source Emission-Diffusion (VSED) model. For the Landauer model, the Gauss quadrature method is applied, and it summarizes all kinds of variants, exhibiting its state-of-art. For the 2D Pao-Sah model, the aspects of its theoretical fundamentals are rederived, and the electrostatic potentials of electrons and holes are clarified. A brief development history is compiled for the VSED model. In summary, the Landauer model is naturally appropriate for the ballistic transport of short channels, and the 2D Pao-Sah model is applicable to long-channel devices. By contrast, the VSED model offers a smooth transition between ultimate cases. These three models cover a fairly completed channel length range, which enables researchers to choose the appropriate compact model for their works.
引用
收藏
页码:574 / 591
页数:18
相关论文
共 50 条
  • [1] Ambipolar Transport Compact Models for Two-Dimensional Materials Based Field-Effect Transistors
    Zhaoyi Yan
    Guangyang Gou
    Jie Ren
    Fan Wu
    Yang Shen
    He Tian
    Yi Yang
    Tian-Ling Ren
    Tsinghua Science and Technology, 2021, 26 (05) : 574 - 591
  • [2] Field-Effect Transistors Based on Two-dimensional Materials (Invited)
    Keshari Nandan
    Ateeb Naseer
    Yogesh S. Chauhan
    Transactions of the Indian National Academy of Engineering, 2023, 8 (1) : 1 - 14
  • [3] Investigations on Field-Effect Transistors Based on Two-Dimensional Materials
    Finge, T.
    Riederer, F.
    Mueller, M. R.
    Grap, T.
    Kallis, K.
    Knoch, J.
    ANNALEN DER PHYSIK, 2017, 529 (11)
  • [4] Field-effect transistors based on two-dimensional materials for logic applications
    王欣然
    施毅
    张荣
    Chinese Physics B, 2013, (09) : 151 - 165
  • [5] Field-effect transistors based on two-dimensional materials for logic applications
    Wang Xin-Ran
    Shi Yi
    Zhang Rong
    CHINESE PHYSICS B, 2013, 22 (09)
  • [6] Full Two-Dimensional Ambipolar Field-Effect Transistors for Transparent and Flexible Electronics
    Ming, Ziyu
    Sun, Haoran
    Wang, Hu
    Sheng, Zhe
    Wang, Yue
    Zhang, Zengxing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) : 45131 - 45138
  • [7] Theoretical Investigation of Dielectric Materials for Two-Dimensional Field-Effect Transistors
    Teitz, Liora
    Caspary Toroker, Maytal
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (18)
  • [9] Two-Dimensional Pnictogen for Field-Effect Transistors
    Zhou, Wenhan
    Chen, Jiayi
    Bai, Pengxiang
    Guo, Shiying
    Zhang, Shengli
    Song, Xiufeng
    Tao, Li
    Zeng, Haibo
    RESEARCH, 2019, 2019
  • [10] Ambipolar transport in two-dimensional Sn-based perovskite field-effect transistors using an aliphatic polymer-assisted method
    Zhang, Fan
    Zhang, Quan
    Liu, Xin
    Qin, Liang
    Hu, Yufeng
    Lou, Zhidong
    Hou, Yanbing
    Teng, Feng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (40) : 22842 - 22853