Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries

被引:145
|
作者
Lv, Qing [1 ]
Wang, Ning [2 ]
Si, Wenyan [1 ]
Hou, Zhufeng [3 ]
Li, Xiaodong [1 ]
Wang, Xin [1 ]
Zhao, Fuhua [1 ]
Yang, Ze [1 ]
Zhang, Yanliang [4 ]
Huang, Changshui [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, 189 Songling Rd, Qingdao 266101, Shandong, Peoples R China
[2] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Shandong, Peoples R China
[3] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[4] Thermo Fisher Sci Ltd, Shanghai 201206, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Pyridinic nitrogen doped carbon materials; Metal-free electrocatalysts; Oxygen reduction reaction; Zn-air batteries; BIFUNCTIONAL ELECTROCATALYST; FREE CATALYSTS; POROUS CARBON; ACTIVE-SITES; GRAPHENE; GRAPHYNE; GRAPHDIYNE; NANOSHEETS; FRAMEWORK; JUNCTIONS;
D O I
10.1016/j.apcatb.2019.118234
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational design a metal-free catalyst with well-defined structure as alternative of noble metal is highly desirable but challenging to catalyze oxygen reaction for metal-air batteries. In this report, nitrogen with a specific configuration is selectively doped into the carbon skeleton to prepare a graphdiyne-like carbon material, in which one carbon atom in every benzene ring of graphdiyne (GDY) is substituted by pyridinc N (PyN-GDY). Composed by pyridine ring and acetylenic linkers, the PyN-GDY is prepared through a bottom-up strategy using pentaethynylpyridine as the monomer. The as-synthesized PyN-GDY with "defined" molecular structure is an ideal model for addressing the intrinsic activity of active sites at molecular level. It exhibits excellent performance in both alkaline and acidic media as electrochemical catalyst for oxygen reduction reaction (ORR). The PyN-GDY-based Zn-air battery is demonstrated more active and stable than commercial Pt/C-based battery. Density functional theory calculations are used to analyze and determine the possible active sites of PyN-GDY in ORR. The precise construction of specific nitrogen doped carbon material is an effective method to produce efficient catalysts for electrocatalysis.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [1] Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries
    Zhang, Li-Yuan
    Wang, Meng-Ran
    Lai, Yan-Qing
    Li, Xiao-Yan
    JOURNAL OF POWER SOURCES, 2017, 359 : 71 - 79
  • [2] Edge Defect Engineering of Nitrogen-Doped Carbon for Oxygen Electrocatalysts in Zn-Air Batteries
    Wang, Qichen
    Lei, Yongpeng
    Zhu, Yinggang
    Wang, Hong
    Feng, Junzong
    Ma, Guangying
    Wang, Yingde
    Li, Youji
    Nan, Bo
    Feng, Qingguo
    Lu, Zhouguang
    Yu, Hao
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (35) : 29448 - 29456
  • [3] Nitrogen, sulfur, and oxygen tri-doped carbon nanosheets as efficient multifunctional electrocatalysts for Zn-air batteries and water splitting
    Yin, Ruonan
    Zhu, Shaojun
    Lu, Tianrui
    Zhang, Qingcheng
    Lin, Dajie
    Fin, Huile
    Wang, Shun
    Lv, Jing-Jing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (58) : 21959 - 21968
  • [4] FeCo 5 /Nitrogen doped carbon as an efficient bifunctional oxygen electrocatalyst for Zn-Air batteries
    Wang, Jingyu
    Zhang, Tianai
    He, Shengzhi
    Sun, Chunwen
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 965
  • [5] Nitrogen deficient carbon nitride electrocatalysts for Zn-air batteries
    Wagh, Nayantara
    Shinde, Sambhaji
    Lee, Jung Ho
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [6] Iron-decorated nitrogen-rich carbons as efficient oxygen reduction electrocatalysts for Zn-air batteries
    Liu, Zhuang
    Liu, Jing
    Wu, Hao Bin
    Shen, Gurong
    Le, Zaiyuan
    Chen, Gen
    Lu, Yunfeng
    NANOSCALE, 2018, 10 (36) : 16996 - 17001
  • [7] Perovskite nanoparticles@N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries
    Lin, Haoqing
    Xie, Jiao
    Zhang, Zhenbao
    Wang, Shaofeng
    Chen, Dengjie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 581 : 374 - 384
  • [8] Fe3O4-Encapsulating N-doped porous carbon materials as efficient oxygen reduction reaction electrocatalysts for Zn-air batteries
    Li, Longbin
    Li, Yizhe
    Xiao, Yingbo
    Zeng, Rong
    Tang, Xiannong
    Yang, Weizu
    Huang, Jun
    Yuan, Kai
    Chen, Yiwang
    CHEMICAL COMMUNICATIONS, 2019, 55 (52) : 7538 - 7541
  • [9] Nitrogen-doped mesoporous carbon nanospheres loaded with cobalt nanoparticles for oxygen reduction and Zn-air batteries
    Chen, Lulu
    Zhang, Yelong
    Jia, Jianbo
    CHINESE CHEMICAL LETTERS, 2023, 34 (07)
  • [10] Highly Active Bifunctional Electrocatalysts for Oxygen Evolution and Reduction in Zn-Air Batteries
    Kim, Sung-Wook
    Son, Yoonkook
    Choi, Keunsu
    Kim, Sun-, I
    Son, Yeonguk
    Park, Joohyuk
    Lee, Jun Hee
    Jang, Ji-Hyun
    CHEMSUSCHEM, 2018, 11 (24) : 4203 - 4208