Classical velocity in κ-deformed Poincare algebra and a maximum acceleration

被引:7
|
作者
Rama, SK [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
kappa-deformed Poincare algebra; doubly special relativity; maximum acceleration;
D O I
10.1142/S0217732303009228
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the commutators of the kappa-deformed Poincare algebra (kappaPA) in an arbitrary basis. It is known that the two recently studied doubly special relativity theories correspond to different choices of kappaPA bases. We present another such example. We consider the classical limit of kappaPA and calculate particle velocity in an arbitrary basis. It has standard properties and its expression takes a simple form in terms of the variables in the Snyder basis. We then study the particle trajectory explicitly for the case of a constant force. Assuming that the spacetime continuum, velocity, acceleration, etc. can be defined only at length scales greater than x(min) not equal 0, we show that the acceleration has a finite maximum.
引用
收藏
页码:527 / 536
页数:10
相关论文
共 50 条
  • [1] THE CLASSICAL BASIS FOR KAPPA-DEFORMED POINCARE ALGEBRA AND SUPERALGEBRA
    KOSINSKI, P
    LUKIERSKI, J
    SOBCZYK, J
    MASLANKA, P
    MODERN PHYSICS LETTERS A, 1995, 10 (34) : 2599 - 2606
  • [2] Q-DEFORMED POINCARE ALGEBRA
    OGIEVETSKY, O
    SCHMIDKE, WB
    WESS, J
    ZUMINO, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (03) : 495 - 518
  • [3] Loop-deformed Poincare algebra
    Mielczarek, Jakub
    EPL, 2014, 108 (04)
  • [4] DEFORMED POINCARE CONTAINING THE EXACT LORENTZ ALGEBRA
    KEHAGIAS, AA
    MEESSEN, PAA
    ZOUPANOS, G
    PHYSICS LETTERS B, 1994, 324 (01) : 20 - 27
  • [5] Spin in the q-deformed Poincare algebra
    Blohmann, C
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (02) : 329 - 342
  • [6] DEFORMED POINCARE ALGEBRA AND FIELD-THEORY
    KEHAGIAS, AA
    MEESSEN, PAA
    ZOUPANOS, G
    PHYSICS LETTERS B, 1995, 346 (3-4) : 262 - 268
  • [7] Absorption of TeV photons and κ-deformed Poincare algebra
    Amelino-Camelia, G
    Lukierski, J
    Nowicki, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (12) : 1247 - 1253
  • [8] Covariant particle statistics and intertwiners of the κ-deformed Poincare algebra
    Young, C. A. S.
    Zegers, R.
    NUCLEAR PHYSICS B, 2008, 797 (03) : 537 - 549
  • [9] MORE ABOUT THE Q-DEFORMED POINCARE ALGEBRA
    GILLER, S
    KOSINSKI, P
    MAJEWSKI, M
    MASLANKA, P
    KUNZ, J
    PHYSICS LETTERS B, 1992, 286 (1-2) : 57 - 62
  • [10] Modified relativity from the kappa-deformed Poincare algebra
    Bowes, J. P.
    Jarvis, P. D.
    Classical and Quantum Gravity, 13 (06):