Multiple time-scale approach for a system of Brownian particles in a nonuniform temperature field

被引:14
|
作者
Lopez, Cristobal [1 ]
Marini, Umberto
Marconi, Bettolo
机构
[1] Univ Islas Baleares, CSIC UIB, IMEDEA, E-07122 Palma de Mallorca, Spain
[2] Dipartimento Fis, I-68032 Camerino, MC, Italy
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 02期
关键词
D O I
10.1103/PhysRevE.75.021101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Smoluchowski equation for a system of Brownian particles in a temperature gradient is derived from the Kramers equation by means of a multiple time-scale method. The interparticle interactions are assumed to be represented by a mean-field description. We present numerical results that compare well with the theoretical prediction together with an extensive discussion on the prescription of the Langevin equation in overdamped systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] PRODUCTION CONTROL OF MANUFACTURING SYSTEMS - A MULTIPLE TIME-SCALE APPROACH
    JIANG, J
    LOU, SXC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (11) : 2292 - 2297
  • [2] MULTIPLE TIME-SCALE POWER-SYSTEM DYNAMIC SIMULATION
    KURITA, A
    OKUBO, H
    KLAPPER, DB
    MILLER, NW
    PRICE, WW
    OKI, K
    AGEMATSU, S
    SANCHEZGASCA, JJ
    WIRGAU, KA
    YOUNKINS, TD
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (01) : 216 - 223
  • [3] Mach1: Nonuniform time-scale modification of speech
    Covell, M
    Withgott, M
    Slaney, M
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 349 - 352
  • [4] ON THE STABILITY OF MULTIPLE TIME-SCALE SYSTEMS
    ABED, EH
    TITS, AL
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1986, 44 (01) : 211 - 218
  • [5] High friction limit of the Kramers equation: The multiple time-scale approach
    Bocquet, L
    [J]. AMERICAN JOURNAL OF PHYSICS, 1997, 65 (02) : 140 - 144
  • [6] The magnetic field of the β Lyrae system:: Orbital and longer time-scale variability
    Leone, F
    Plachinda, SI
    Umana, G
    Trigilio, C
    Skulsky, M
    [J]. ASTRONOMY & ASTROPHYSICS, 2003, 405 (01) : 223 - 226
  • [7] Energy-based nonuniform time-scale compression of audio signals
    Chu, WC
    Lashkari, K
    [J]. IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2003, 49 (01) : 183 - 187
  • [8] On the reconstitution problem in the multiple time-scale method
    Luongo, A
    Paolone, A
    [J]. NONLINEAR DYNAMICS, 1999, 19 (02) : 133 - 156
  • [9] On the Reconstitution Problem in the Multiple Time-Scale Method
    A. Luongo
    A. Paolone
    [J]. Nonlinear Dynamics, 1999, 19 (2) : 135 - 158
  • [10] Geometric integrators for multiple time-scale simulation
    Jia, Zhidong
    Leimkuhler, Ben
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19): : 5379 - 5403