Fault slippage and its permeability evolution during supercritical CO2 fracturing in layered formation

被引:5
|
作者
Wei, Xiaochen [1 ,2 ,3 ]
Zhang, Jingxuan [1 ]
Li, Qi [2 ,4 ]
Liu, Xiangjun [3 ]
Liang, Lixi [3 ]
Ran, Lili [1 ]
机构
[1] Southwest Petr Univ, Sch Geosci & Technol, Chengdu 610500, Sichuan, Peoples R China
[2] Chinese Acad Sci, State Key Lab Geomech & Geotech Engn, Inst Rock & Soil Mech, Wuhan 430071, Hubei, Peoples R China
[3] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, Chengdu 610500, Sichuan, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
INDUCED SEISMICITY; REACTIVATION; INTERFACE; LEAKAGE; GROWTH;
D O I
10.2516/ogst/2019051
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Understanding the hydromechanical responses of faults during supercritical CO2 fracturing is important for reservoir management and the design of energy extraction systems. As small faults are widespread in Chang 7 member of the Yanchang Formation, Ordos Basin, China, supercritical CO2 fracturing operation has the potential to reactive these undetected small faults and leads to unfavorable fracking fluid migrate. In this work, we examined the role of fault slippage and permeability evolution along a small fault connecting the pay zone and the confining formation during the whole process of fracturing and production. A coupled hydromechanical model conceptualized from actual engineering results was introduced to address the main concerns of this work, including, (1) whether the existence of a undetected small fault would effectively constrain the hydraulic fracture height evolution, (2) what the magnitude of the induced microseismic events would be and (3) whether the permeability change along the fault plane would affect the vertical conductivity of the confining formation and thus increase the risk for the fracturing fluid to leak. Our results have shown that the initial hydrofracture formed at the perforation and propagated upward, once it merged with the fault surface, the existence of an undetected small fault would effectively constrain the hydraulic fracture height evolution. As fracturing continued, further slippage spread from the permeability increase zone of high permeability to shallower levels, and the extent of this zone was dependent on the magnitude of the fault slippage. At the end of extraction, the slip velocity decreases gradually to zero and the fault slippage finally reaches stabilization. In general, undetected small faults in targeted reservoir may not be the source of large earthquakes. The induced microseismic events could be considered as the sources of acoustic emission events detected while monitoring the fracturing fluid front. Due to the limited fault slippage and lower initial permeability, the CO2 fracturing operation near undetected small faults could not conduct preferential pathway for upward CO2 leakage or contaminate overlying shallower potable aquifers.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Evolution of Permeability during Fracturing Processes in Rocks under Conditions of Geological Storage of CO2
    Fujii, Takashi
    Funatsu, Takahiro
    Oikawa, Yasuki
    Sorai, Masao
    Lei, Xinglin
    MATERIALS TRANSACTIONS, 2015, 56 (05) : 679 - 686
  • [2] Permeability Evolution of Fractures in Shale in the Presence of Supercritical CO2
    Hashemi, Sam S.
    Zoback, Mark D.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (08)
  • [3] Influence of Supercritical CO2 Fracturing Fluid on the Permeability of Shale Reservoir and Mechanism Analysis
    Guo, Qing
    Li, Ze
    Zeng, Xuanxiang
    Li, Dan
    An, Huiming
    Zhao, Li
    Tao, Liang
    Li, Qiang
    ACS OMEGA, 2024, 9 (22): : 23294 - 23302
  • [4] Experimental study on dynamic fracture propagation and evolution during coal seam supercritical CO2 fracturing
    Sun, Xiaodong
    Zhao, Kaikai
    Song, Xuehan
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [5] Analysis of mechanisms of supercritical CO2 fracturing
    Wang Hai-Zhu
    Li Gen-sheng
    He Zhen-guo
    Shen Zhong-hou
    Li Xiao-jiang
    Zhang Zhen-xiang
    Wang Meng
    Yang Bing
    Zheng Yong
    Shi Lu-jie
    ROCK AND SOIL MECHANICS, 2018, 39 (10) : 3589 - 3596
  • [6] Wettability Alteration Study of Supercritical CO2 Fracturing Fluid on Low Permeability Oil Reservoir
    Sun, Xin
    Dai, Caili
    Sun, Yongpeng
    Du, Mingyong
    Wang, Tao
    Zou, Chenwei
    He, Jiayuan
    ENERGY & FUELS, 2017, 31 (12) : 13364 - 13373
  • [7] Analysis of Fluid-Structure Interaction during Fracturing with Supercritical CO2
    Cheng, Jiarui
    Yang, Yirong
    Ye, Sai
    Luo, Yucheng
    Peng, Bilian
    Fluid Dynamics and Materials Processing, 2024, 20 (12): : 2887 - 2906
  • [9] Revealing the effects of thermal properties of supercritical CO2 on proppant migration in supercritical CO2 fracturing
    Liu, Boyu
    Yao, Jun
    Sun, Hai
    Zhang, Lei
    GAS SCIENCE AND ENGINEERING, 2024, 121
  • [10] Evolution mechanism of coal chemical structure after supercritical CO2 transient fracturing
    Li, Yunzhuo
    Ji, Huaijun
    Sasmito, Agus P.
    Hu, Shaobin
    Han, Chu
    FUEL, 2025, 379