Orthomodular lattices of subspaces obtained from quadratic forms

被引:0
|
作者
Carréga, JC
Mayet, R
机构
[1] Univ Lyon 1, UMR 5028, Inst Girard Desargues, F-69622 Villeurbanne, France
[2] Univ Lyon 1, CNRS, F-69622 Villeurbanne, France
关键词
orthomodular lattice; quadratic space; polarity; variety;
D O I
10.1023/B:IJTP.0000048810.95484.4e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Being given a field K of characteristic different from 2 and 3, a 3-dimensional vector space E over K, and a nonsingular symmetric bilinear form. over E, we define a structure of orthomodular lattice T (E,phi) on the set of all nonisotropic subspaces of E. We give a structure Theorem about the irreducible and 3-homogeneous subalgebras of T (E,phi). In particular, these subalgebras are all of the form T (E',phi') where E' is a 3-dimensional subspace of E, if E is regarded as a vector space over a subfield K' of K, and phi' is induced by phi. This structure Theorem allows us to achieve an old project, concerning minimal orthomodular lattices (an orthomodular lattice L is called minimal if it is nonmodular and if all its proper subalgebras are either modular, or isomorphic to L).
引用
收藏
页码:1651 / 1658
页数:8
相关论文
共 50 条
  • [1] Orthomodular Lattices of Subspaces Obtained from Quadratic Forms
    J. C. Carréga
    R. Mayet
    International Journal of Theoretical Physics, 2004, 43 : 1651 - 1658
  • [2] Automorphism Groups of Orthomodular Lattices Obtained from Quadratic Spaces
    Jean-Claude Carrega
    International Journal of Theoretical Physics, 2005, 44 : 2157 - 2165
  • [3] Automorphism groups of orthomodular lattices obtained from quadratic spaces
    Carrega, Jean-Claude
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (12) : 2157 - 2165
  • [4] ORTHOMODULAR LATTICES AND QUADRATIC SPACES - A SURVEY
    PIZIAK, R
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1991, 21 (03) : 951 - 992
  • [5] Orthomodular lattices from 3-dimensional quadratic spaces
    J. C. Carréga
    R. Mayet
    algebra universalis, 2004, 52 : 49 - 88
  • [6] Orthomodular lattices from 3-dimensional quadratic spaces
    Carréga, JC
    Mayet, R
    ALGEBRA UNIVERSALIS, 2004, 52 (01) : 49 - 88
  • [7] Weaker forms of associativity in orthomodular lattices
    Stephen M. Gagola
    Jeannine J. M. Gabriëls
    Mirko Navara
    Algebra universalis, 2015, 73 : 249 - 266
  • [8] Weaker forms of associativity in orthomodular lattices
    Gagola, Stephen M., III
    Gabriels, Jeannine J. M.
    Navara, Mirko
    ALGEBRA UNIVERSALIS, 2015, 73 (3-4) : 249 - 266
  • [9] Minimal Orthomodular Lattices from Quadratic Spaces over Finite Fields
    J. C. Carréga
    R. J. Greechie
    R. Mayet
    International Journal of Theoretical Physics, 2000, 39 : 517 - 524
  • [10] Minimal orthomodular lattices from quadratic spaces over finite fields
    Carréga, JC
    Greechie, RJ
    Mayet, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (03) : 517 - 524