Industrial Symbiosis: Exploring Big-data Approach for Waste Stream Discovery

被引:30
|
作者
Song, Bin [1 ]
Yeo, Zhiquan [1 ]
Kohls, Paul [2 ]
Herrmann, Christoph [3 ]
机构
[1] Singapore Inst Mfg Technol, 2 Fusionopolis Way,08-04, Singapore 138634, Singapore
[2] Univ Cincinnati, Cincinnati, OH USA
[3] Tech Univ Carolo Wilhelmina Braunschweig, Braunschweig, Germany
关键词
Big Data; Industrial Symbiosis; Waste reuse and recycle; urban sustainability; ECOLOGY;
D O I
10.1016/j.procir.2016.11.245
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Industrial symbiosis is a way to realize circular economy in which waste streams from industrial production and related activities are collected, reused or recycled into resources. The concept is increasingly incorporated into new company design and industrial park development. There also exist waste management companies who collect and process certain waste streams for economic gains. However, industrialized cities typically experience difficulty to increase their total recycling rate due to the lack of complete and detailed data on the types, quantity, and location of waste streams generated, and hence the economically-viable collection and processing of many waste streams. This paper explores and discusses the feasibility and methods for a big data approach to obtain necessary data for discovery of potential industrial symbioses within the perimeter of a large industrialized city. The aim is to realize the objective of embedding industrial symbioses as an essential part of sustainable urban living and management. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:353 / 358
页数:6
相关论文
共 50 条
  • [1] An Efficient Industrial Big-Data Engine
    Basanta-Val, Pablo
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (04) : 1361 - 1369
  • [2] Analysis and Optimization of Big-Data Stream Processing
    Vakilinia, Shahin
    Zhang, Xinyao
    Qiu, Dongyu
    [J]. 2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [3] Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology
    Brody, Jennifer A.
    Morrison, Alanna C.
    Bis, Joshua C.
    O'Connell, Jeffrey R.
    Brown, Michael R.
    Huffman, Jennifer E.
    Ames, Darren C.
    Carroll, Andrew
    Conomos, Matthew P.
    Gabriel, Stacey
    Gibbs, Richard A.
    Gogarten, Stephanie M.
    Gupta, Namrata
    Jaquish, Cashell E.
    Johnson, Andrew D.
    Lewis, Joshua P.
    Liu, Xiaoming
    Manning, Alisa K.
    Papanicolaou, George J.
    Pitsillides, Achilleas N.
    Rice, Kenneth M.
    Salerno, William
    Sitlani, Colleen M.
    Smith, Nicholas L.
    Heckbert, Susan R.
    Laurie, Cathy C.
    Mitchell, Braxton D.
    Vasan, Ramachandran S.
    Rich, Stephen S.
    Rotter, Jerome I.
    Wilson, James G.
    Boerwinkle, Eric
    Psaty, Bruce M.
    Cupples, L. Adrienne
    [J]. NATURE GENETICS, 2017, 49 (11) : 1560 - 1563
  • [4] Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology
    Jennifer A Brody
    Alanna C Morrison
    Joshua C Bis
    Jeffrey R O'Connell
    Michael R Brown
    Jennifer E Huffman
    Darren C Ames
    Andrew Carroll
    Matthew P Conomos
    Stacey Gabriel
    Richard A Gibbs
    Stephanie M Gogarten
    Namrata Gupta
    Cashell E Jaquish
    Andrew D Johnson
    Joshua P Lewis
    Xiaoming Liu
    Alisa K Manning
    George J Papanicolaou
    Achilleas N Pitsillides
    Kenneth M Rice
    William Salerno
    Colleen M Sitlani
    Nicholas L Smith
    Susan R Heckbert
    Cathy C Laurie
    Braxton D Mitchell
    Ramachandran S Vasan
    Stephen S Rich
    Jerome I Rotter
    James G Wilson
    Eric Boerwinkle
    Bruce M Psaty
    L Adrienne Cupples
    [J]. Nature Genetics, 2017, 49 : 1560 - 1563
  • [5] A Minimax Approach for Classification with Big-data
    Krishnan, R.
    Jagannathan, S.
    Samaranayake, V. A.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1437 - 1444
  • [6] A review on sentiment discovery and analysis of educational big-data
    Han, Zhongmei
    Wu, Jiyi
    Huang, Changqin
    Huang, Qionghao
    Zhao, Meihua
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (01)
  • [7] A Big-Data Approach to Contemporary French Politics
    Sobanet, Andrew
    Singh, Lisa
    [J]. CONTEMPORARY FRENCH AND FRANCOPHONE STUDIES, 2020, 24 (05) : 625 - 634
  • [8] WILL BIG-DATA ATTRACT P-HACKING TO THE WORLD OF INDUSTRIAL ENGINEERING?
    Goti-Elordi, Aitor
    Duarte-Bom, Pedro-Ricardo
    Campos-Granados, Jose-Antonio
    Galar-Pascual, Diego
    [J]. DYNA, 2019, 94 (03): : 240 - 242
  • [9] Waste stream characterisation for industrial symbiosis matchmaking: a case study for ferro metals
    Bracquene, Ellen
    Duflou, Joost R.
    [J]. PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2019), 2019, 2113
  • [10] HPC, Cloud and Big-Data Convergent Architectures: The LEXIS Approach
    Scionti, Alberto
    Martinovic, Jan
    Terzo, Olivier
    Walter, Etienne
    Levrier, Marc
    Hachinger, Stephan
    Magarielli, Donato
    Goubier, Thierry
    Louise, Stephane
    Parodi, Antonio
    Murphy, Sean
    D'Amico, Carmine
    Ciccia, Simone
    Danovaro, Emanuele
    Lagasio, Martina
    Donnat, Frederic
    Golasowski, Martin
    Quintino, Tiago
    Hawkes, James
    Martinovic, Tomas
    Riha, Lubomir
    Slaninova, Katerina
    Serra, Stefano
    Peveri, Roberto
    [J]. COMPLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS 2019), 2020, 993 : 200 - 212