Analysis of regularized Nystrom subsampling for regression functions of low smoothness

被引:14
|
作者
Lu, Shuai [1 ,2 ]
Mathe, Peter [3 ]
Pereverzyev, Sergiy, Jr. [4 ]
机构
[1] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[4] Med Univ Innsbruck, Dept Neuroradiol & Neuroimaging Res Core Facil, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
Nystrom subsampling; kernel learning; low smoothness; learning rate; NUMERICAL DIFFERENTIATION; BOUNDS;
D O I
10.1142/S0219530519500039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a Nystrom-type subsampling approach to large kernel learning methods in the misspecified case, where the target function is not assumed to belong to the reproducing kernel Hilbert space generated by the underlying kernel. This case is less understood in spite of its practical importance. To model such a case, the smoothness of target functions is described in terms of general source conditions. It is surprising that almost for the whole range of the source conditions, describing the misspecified case, the corresponding learning rate bounds can be achieved with just one value of the regularization parameter. This observation allows a formulation of mild conditions under which the plain Nystrom subsampling can be realized with subquadratic cost maintaining the guaranteed learning rates.
引用
收藏
页码:931 / 946
页数:16
相关论文
共 50 条
  • [1] Regularized Nystrom subsampling in regression and ranking problems under general smoothness assumptions
    Myleiko, G. L.
    Pereverzyev, S., Jr.
    Solodky, S. G.
    [J]. ANALYSIS AND APPLICATIONS, 2019, 17 (03) : 453 - 475
  • [2] Nystrom subsampling method for coefficient-based regularized regression
    Ma, Longda
    Shi, Lei
    Wu, Zongmin
    [J]. INVERSE PROBLEMS, 2019, 35 (07)
  • [3] Nystrom type subsampling analyzed as a regularized projection
    Kriukova, Galyna
    Pereverzyev, Sergiy, Jr.
    Tkachenko, Pavlo
    [J]. INVERSE PROBLEMS, 2017, 33 (07)
  • [4] ON LEARNING RATES FOR REGULARIZED NYSTROM SUBSAMPLING IN UNSUPERVISED DOMAIN ADAPTATION
    Myleiko, H.
    Solodky, S.
    [J]. JOURNAL OF APPLIED AND NUMERICAL ANALYSIS, 2023, 1 : 58 - 71
  • [5] Nystrom landmark sampling and regularized Christoffel functions
    Fanuel, Michael
    Schreurs, Joachim
    Suykens, Johan A. K.
    [J]. MACHINE LEARNING, 2022, 111 (06) : 2213 - 2254
  • [6] Subsampling for Ridge Regression via Regularized Volume Sampling
    Derezinski, Micha L.
    Warmuth, Manfred K.
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [7] Window subsampling of estimating functions with application to regression models
    Heagerty, PJ
    Lumley, T
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (449) : 197 - 211
  • [8] Error Analysis of Generalized Nystrom Kernel Regression
    Chen, Hong
    Xia, Haifeng
    Cai, Weidong
    Huang, Heng
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [9] Randomized Nystrom Features for Fast Regression: An Error Analysis
    Trokicic, Aleksandar
    Todorovic, Branimir
    [J]. ALGEBRAIC INFORMATICS, CAI 2019, 2019, 11545 : 249 - 257
  • [10] ON INTERPOLATION REMAINDERS OF FUNCTIONS OF LOW ORDER SMOOTHNESS
    王兴华
    杨义群
    [J]. Science Bulletin, 1983, (03) : 424 - 424