Block Markov superposition transmission of convolutional codes with minimum shift keying signalling

被引:1
|
作者
Liu, Xiying [1 ,2 ]
Liang, Chulong [1 ]
Ma, Xiao [1 ]
机构
[1] Sun Yat Sen Univ, Dept Elect & Commun Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Sch Informat Engn, Guangzhou, Guangdong, Peoples R China
关键词
Markov processes; convolutional codes; minimum shift keying; iterative methods; error statistics; AWGN channels; modulation coding; block Markov superposition transmission; minimum shift keying signalling; BMST-MSK; BMST-NRMSK; sliding-window decoding algorithm; sliding-window demodulation algorithm; iterative processing; genie-aided decoder; bit-error-rate; additive white Gaussian noise channels; Shannon limit; MODULATION; PERFORMANCE; DESIGN; CPM; MSK;
D O I
10.1049/iet-com.2014.0751
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, the authors' present a scheme, denoted as BMST-MSK, which combines the block Markov superposition transmission (BMST) with the minimum shift keying (MSK) signalling. The BMST-MSK can be implemented in two forms - the BMST with recursive MSK (BMST-RMSK) and the BMST with non-recursive MSK (BMST-NRMSK). The BMST-MSK admits a sliding-window decoding/demodulation algorithm, where two schedules with or without iterative processing between the BMST and MSK (referred to as outer iteration) are discussed. To analyse the asymptotic performance of BMST-MSK, the authors' first assume a genie-aided decoder and then derive the union bound for the equivalent genie-aided system. Numerical results show that the performances of the BMST-MSK match well with the derived lower bounds in the low error rate regions. From simulations, the authors' found that the outer iterations can provide performance improvement for the BMST-RMSK, but not for the BMST-NRMSK. Taking a (2,1,2) convolutional code with input length of 10 000 bits as the basic code, the BMST-NRMSK achieves a bit-error-rate of 10(-5) at E-b/N-0 = 0.45 dB over additive white Gaussian noise channels, which is away from the Shannon limit about 0.25 dB.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [1] Block Markov Superposition Transmission with Color Shift Keying
    ZENG Huicong
    LIN Nina
    MA Xiao
    Chinese Journal of Electronics, 2018, 27 (05) : 1080 - 1084
  • [2] Block Markov Superposition Transmission with Color Shift Keying
    Zeng Huicong
    Lin Nina
    Ma Xiao
    CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (05) : 1080 - 1084
  • [3] Block Markov Superposition Transmission: Construction of Big Convolutional Codes From Short Codes
    Ma, Xiao
    Liang, Chulong
    Huang, Kechao
    Zhuang, Qiutao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) : 3150 - 3163
  • [4] Block Markov Superposition Transmission of RUN Codes
    Liang, Chulong
    Ma, Xiao
    Bai, Baoming
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (09) : 3634 - 3643
  • [5] Systematic Block Markov Superposition Transmission of Repetition Codes
    Ma, Xiao
    Huang, Kechao
    Bai, Baoming
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (03) : 1604 - 1620
  • [6] Recursive Block Markov Superposition Transmission of Short Codes
    Zhao, Shancheng
    Huang, Qin
    Ma, Xiao
    Bai, Baoming
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2018 - 2022
  • [7] Systematic Block Markov Superposition Transmission of Repetition Codes
    Huang, Kechao
    Ma, Xiao
    Bai, Baoming
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1929 - 1933
  • [8] Performance Analysis of Block Markov Superposition Transmission of Short Codes
    Huang, Kechao
    Ma, Xiao
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (02) : 362 - 374
  • [9] Block Markov Superposition Transmission of Fourier Transform Pair Codes
    Ma, Xiao
    Chen, Dian
    Lv, Yaping
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 378 - 382
  • [10] Spatially Coupled Codes via Bidirectional Block Markov Superposition Transmission
    Li, Gaoyan
    Zhao, Shancheng
    Chen, Haiqiang
    Wen, Jinming
    TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (03): : 656 - 670