Multi-Agent Reinforcement Learning for Traffic Signal Control: Algorithms and Robustness Analysis

被引:1
|
作者
Wu, Chunliang [1 ]
Ma, Zhenliang [1 ]
Kim, Inhi [1 ]
机构
[1] Monash Univ, Inst Transport Studies, Dept Civil Engn, Clayton, Vic 3800, Australia
关键词
D O I
10.1109/itsc45102.2020.9294623
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reinforcement learning (RL), given its adaptability and generality, has great potential to optimize online traffic signal control strategies. Although studies have proposed various RL-based signal controllers and validated them offline, very few examine the robustness of the trained RL-based controllers when deployed in a dynamic traffic environment. This paper proposed a multi agent reinforcement learning algorithm for traffic signal control and developed a general multi-agent optimization simulation tool to evaluate different signal control methods. A transfer learning technique is applied to test the robustness of the proposed algorithm and traditional control approaches under different traffic scenarios, including stochastic traffic flow, varying traffic volume, and uncertain sensor data. The experimental results show that the proposed RL-based control method is robust under stochastic traffic flow and variation traffic demand patterns, and it outperforms the fixed-time and vehicle-actuated methods. However, it is unstable in the case of highly noisy sensor data. Also, the trained RL-based controller can continuously learn online and improve its performance by interacting with the dynamic traffic environment, especially when the traffic is congested, and the sensor has noisy observations.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Multi-agent Reinforcement Learning for Traffic Signal Control
    Prabuchandran, K. J.
    Kumar, Hemanth A. N.
    Bhatnagar, Shalabh
    [J]. 2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 2529 - 2534
  • [2] Multi-agent deep reinforcement learning with traffic flow for traffic signal control
    Hou, Liang
    Huang, Dailin
    Cao, Jie
    Ma, Jialin
    [J]. JOURNAL OF CONTROL AND DECISION, 2023,
  • [3] Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach
    Kolat, Mate
    Kovari, Balint
    Becsi, Tamas
    Aradi, Szilard
    [J]. SUSTAINABILITY, 2023, 15 (04)
  • [4] Cooperative Traffic Signal Control Based on Multi-agent Reinforcement Learning
    Gao, Ruowen
    Liu, Zhihan
    Li, Jinglin
    Yuan, Quan
    [J]. BLOCKCHAIN AND TRUSTWORTHY SYSTEMS, BLOCKSYS 2019, 2020, 1156 : 787 - 793
  • [5] Hierarchical graph multi-agent reinforcement learning for traffic signal control
    Yang, Shantian
    [J]. INFORMATION SCIENCES, 2023, 634 : 55 - 72
  • [6] Causal inference multi-agent reinforcement learning for traffic signal control
    Yang, Shantian
    Yang, Bo
    Zeng, Zheng
    Kang, Zhongfeng
    [J]. INFORMATION FUSION, 2023, 94 : 243 - 256
  • [7] Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control
    Zhao, Yang
    Hu, Jian-Ming
    Gao, Ming-Yang
    Zhang, Zuo
    [J]. CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 458 - 470
  • [8] An Improved Traffic Signal Control Method Based on Multi-agent Reinforcement Learning
    Xu, Jianyou
    Zhang, Zhichao
    Zhang, Shuo
    Miao, Jiayao
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 6612 - 6616
  • [9] A multi-agent reinforcement learning based approach for intelligent traffic signal control
    Benhamza, Karima
    Seridi, Hamid
    Agguini, Meriem
    Bentagine, Amel
    [J]. EVOLVING SYSTEMS, 2024, : 2383 - 2397
  • [10] Learning Multi-Intersection Traffic Signal Control via Coevolutionary Multi-Agent Reinforcement Learning
    Chen, Wubing
    Yang, Shangdong
    Li, Wenbin
    Hu, Yujing
    Liu, Xiao
    Gao, Yang
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 15947 - 15963