共 50 条
Histone hypoacetylation contributes to neurotoxicity induced by chronic nickel exposure in vivo and in vitro
被引:10
|作者:
Zhou, Chao
[1
]
Liu, Mengyu
[1
,2
]
Mei, Xiang
[1
]
Li, Qian
[3
]
Zhang, Wenjuan
[1
]
Deng, Ping
[1
]
He, Zhixin
[1
]
Xi, Yu
[4
]
Tong, Tong
[4
]
Pi, Huifeng
[1
]
Lu, Yonghui
[1
]
Chen, Chunhai
[1
]
Zhang, Lei
[1
]
Yu, Zhengping
[1
]
Zhou, Zhou
[4
]
He, Mindi
[1
]
机构:
[1] Army Med Univ, Dept Occupat Hlth, 30 Gaotanyan St, Chongqing 400038, Peoples R China
[2] Gen Hosp Cent Theater Command Chinese Peoples Lib, Dept Med Lab, Wuhan 430070, Peoples R China
[3] Army Med Univ, Xinqiao Hosp, Dept Otolaryngol Head & Neck Surg, Chongqing 400037, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 1, Sch Publ Hlth Depanment Emergency Med, Sch Med,Dept Environm Med,Dept Emergency Med, Hangzhou 310058, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Histone acetylation;
Ni;
Cognitive deficits;
Dendrite complexity;
RNA-seq;
ChIP-seq;
RAT ORGANS;
ACETYLATION;
MEMORY;
MOUSE;
INHIBITORS;
PLASTICITY;
RELEASE;
NEURONS;
CELLS;
ROLES;
D O I:
10.1016/j.scitotenv.2021.147014
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Nickel (Ni) is a heavy metal that is both an environmental pollutant and a threat to human health. However, the effects of Ni on the central nervous system in susceptible populations have not been well established. In the present study, the neurotoxicity of Ni and its underlying mechanism were investigated in vivo and in vitro. Ni exposure through drinking water (10 mg Ni/L, 12 weeks) caused learning and memory impairment in mice. Reduced dendrite complexity was observed in both Ni-exposed mouse hippocampi and Ni-treated (200 mu M, 72 h) primary cultured hippocampal neurons. The levels of histone acetylation, especially at histone H3 lysine 9 (H3K9ac), were reduced in Ni-exposed mouse hippocampi and cultured neurons. RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing analyses revealed that H3K9ac-modulated gene expression were downregulated. Treatment with sodium butyrate, a histone deacetylase inhibitor, attenuated Ni-induced H3K9 hypoacetylation, neural gene downregulation and dendrite complexity reduction in cultured neurons. Sodium butyrate also restored Ni-induced memory impairment in mice. These results indicate that Ni-induced H3K9 hypoacetylation may be a contributor to the neurotoxicity of Ni. The finding that Ni disturbs histone acetylation in the nervous system may provide new insight into the health risk of chronic Ni exposure. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文