Source apportionment of wintertime secondary organic aerosol during the California regional PM10/PM2.5 air quality study

被引:42
|
作者
Chen, Jianjun [1 ]
Ying, Qi [2 ]
Kleeman, Michael J. [1 ]
机构
[1] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
[2] Texas A&M Univ, Zachry Dept Civil Engn, College Stn, TX 77843 USA
基金
美国国家环境保护局;
关键词
CACM; CRPAQS; Secondary organic aerosol; Source apportionment; UCD/CIT air quality model; POLLUTION SOURCES; PARTICULATE MATTER; EMISSIONS; MODEL; SCALE; MECHANISM; GASOLINE; WIND; C-1;
D O I
10.1016/j.atmosenv.2009.07.010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The UCD/CIT air quality model with the Caltech Atmospheric Chemistry Mechanism (CACM) was used to predict source contributions to secondary organic aerosol (SOA) formation in the San Joaquin Valley (SJV) from December 15, 2000 to January 7, 2001. The predicted 24-day average SOA concentration had a maximum value of 4.26 mu g m(-3) 50 km southwest of Fresno. Predicted SOA concentrations at Fresno, Angiola, and Bakersfield were 2.46 mu g m(-3), 1.68 mu g m(-3), and 2.28 mu g m(-3), respectively, accounting for 6%, 37%, and 4% of the total predicted organic aerosol. The average SOA concentration across the entire SJV was 1.35 mu g m(-3), which accounts for approximately 20% of the total predicted organic aerosol. Averaged over the entire SJV, the major SOA sources were solvent use (28% of SOA), catalyst gasoline engines (25% of SOA), wood smoke (16% of SOA), non-catalyst gasoline engines (13% of SOA), and other anthropogenic sources (11% of SOA). Diesel engines were predicted to only account for approximately 2% of the total SOA formation in the SJV because they emit a small amount of volatile organic compounds relative to other sources. In terms of SOA precursors within the SJV, long-chain alkanes were predicted to be the largest SOA contributor, followed by aromatic compounds. The current study identifies the major known contributors to the SOA burden during a winter pollution episode in the SJV, with further enhancements possible as additional formation pathways are discovered. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1331 / 1340
页数:10
相关论文
共 50 条
  • [1] Wintertime PM2.5 and PM10 source apportionment at Sacramento, California
    Motallebi, N
    [J]. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1999, 49 : 25 - 34
  • [2] Source apportionment of visual impairment during the California regional PM10/PM2.5 air quality study
    Chen, Jianjun
    Ying, Qi
    Kleeman, Michael J.
    [J]. ATMOSPHERIC ENVIRONMENT, 2009, 43 (39) : 6136 - 6144
  • [3] PM2.5 chemical composition and spatiotemporal variability during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS)
    Chow, Judith C.
    Chen, L. -W. Antony
    Watson, John G.
    Lowenthal, Douglas H.
    Magliano, Karen A.
    Turkiewicz, Kasia
    Lehrman, Donald E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D10)
  • [4] Source apportionment of indoor PM2.5 and PM10 in homes
    Chao, CY
    Cheng, EC
    [J]. INDOOR AND BUILT ENVIRONMENT, 2002, 11 (01) : 27 - 37
  • [5] Source apportionment for urban PM10 and PM2.5 in the Beijing area
    ZHANG Wei1
    2 Center for Atmospheric Environmental Study
    [J]. Science Bulletin, 2007, (05) : 608 - 615
  • [6] Source apportionment of ambient PM10 and PM2.5 in Haikou, China
    Fang, Xiaozhen
    Bi, Xiaohui
    Xu, Hong
    Wu, Jianhui
    Zhang, Yufen
    Feng, Yinchang
    [J]. ATMOSPHERIC RESEARCH, 2017, 190 : 1 - 9
  • [7] Source apportionment for,urban PM10 and PM2.5 in the Beijing area
    Zhang Wei
    Guo JingHua
    Sun YeLe
    Yuan Hui
    Zhuang GuoShun
    Zhuang YaHui
    Hao ZhengPing
    [J]. CHINESE SCIENCE BULLETIN, 2007, 52 (05): : 608 - 615
  • [8] Modeling air quality during the California Regional PM10/PM2.5 Air Quality Study (CPRAQS) using the UCD/CIT source-oriented air quality model - Part III. Regional source apportionment of secondary and total airborne particulate matter
    Ying, Qi
    Lu, Jin
    Kleeman, Michael
    [J]. ATMOSPHERIC ENVIRONMENT, 2009, 43 (02) : 419 - 430
  • [9] Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea
    Ryou, Hyoung Gon
    Heo, Jongbae
    Kim, Sun-Young
    [J]. ENVIRONMENTAL POLLUTION, 2018, 240 : 963 - 972
  • [10] Development of a source oriented version of the WRF/Chem model and its application to the California regional PM10/PM2.5 air quality study
    Zhang, H.
    DeNero, S. P.
    Joe, D. K.
    Lee, H. -H.
    Chen, S. -H.
    Michalakes, J.
    Kleeman, M. J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (01) : 485 - 503