Ternary Organic Solar Cells With 12.8% Efficiency Using Two Nonfullerene Acceptors With Complementary Absorptions

被引:88
|
作者
Kan, Bin [1 ,2 ,3 ]
Yi, Yuan-Qiu-Qiang [1 ,2 ,3 ]
Wan, Xiangjian [1 ,2 ,3 ]
Feng, Huanran [1 ,2 ,3 ]
Ke, Xin [1 ,2 ,3 ]
Wang, Yanbo [1 ,2 ,3 ]
Li, Chenxi [1 ,2 ,3 ]
Chen, Yongsheng [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab, Tianjin 300071, Peoples R China
[2] Nankai Univ, Coll Chem, Inst Elementoorgan Chem, Ctr Nanoscale Sci & Technol, Tianjin 300071, Peoples R China
[3] Nankai Univ, Coll Chem, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
关键词
high performance; nonfullerene acceptors; small molecules; ternary devices; POWER CONVERSION EFFICIENCY; SMALL-MOLECULE ACCEPTOR; ELECTRON-ACCEPTOR; POLYMER; PERFORMANCE; PHOTOVOLTAICS; MORPHOLOGY; OPTIMIZATION; DONOR;
D O I
10.1002/aenm.201800424
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new small-molecule acceptor (2,9-bis(2-methylene-(3(1,1-dicyanomethylene) benz[f] indanone)) 7,12-dihydro-(4,4,10,10-tetrakis(4-hexylphenyl)-5,11-diocthylthieno-[3', 2': 4,5] cyclopenta[1,2-b] thieno[2., 3.: 3', 4'] cyclopenta[1', 2': 4,5] thieno[2,3-f] [1] benzothiophene) (NNBDT) based on naphthyl-fused indanone ending units is reported. This molecule shows a narrow optical bandgap of 1.43 eV and effective absorption in the range of 700-870 nm. The devices based on poly[(2,6-(4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)-benzo[1,2-b: 4,5-b'] dithiophene))alt-(5,5-(1', 3'-di-2-thienyl-5', 7'-bis(2-ethylhexyl) benzo[1', 2'-c: 4', 5'-c'] dithiophene4,8-dione))] (PBDB-T): NNBDT yield a power conversion efficiency of 11.7% with a low energy loss of 0.55 eV and a high fill factor (FF) of 71.7%. Another acceptor (2,9-bis(2-methylene-(3(1,1-dicyanomethylene) benz[f] indanone)) 7,12-dihydro-4,4,7,7,12,12-hexaoctyl-4H-cyclopenta[2., 1.: 5,6; 3., 4.: 5', 6'] diindeno[1,2b: 1', 2'-b'] dithiophene (FDNCTF) is introduced as the third component to fabricate ternary devices. The two acceptors (NNBDT and FDNCTF) possess complementary absorption, same molecular orientation, and well-miscible behavior. It is found that there exists a nonradiative energy transfer process from FDNCTF to NNBDT. The fullerene-free ternary cells based on PBDBT: NNBDT: FDNCTF achieve a high efficiency of 12.8% with an improved short circuit current near 20 mA cm(-2) in contrast to the binary devices. The result represents the best performance for fullerene-free ternary solar cells reported to date and highlights the potential of ternary solar cells.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Ternary polymer solar cells using two nonfullerene acceptors with cascading energy level and complementary absorptions
    Lei, Yingze
    Liu, Zhiyong
    Sun, Lili
    POLYMER, 2024, 308
  • [2] Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors
    Song, Jiali
    Li, Chao
    Zhu, Lei
    Guo, Jing
    Xu, Jinqiu
    Zhang, Xuning
    Weng, Kangkang
    Zhang, Kangning
    Min, Jie
    Hao, Xiaotao
    Zhang, Yuan
    Liu, Feng
    Sun, Yanming
    ADVANCED MATERIALS, 2019, 31 (52)
  • [3] Ternary Polymer Solar Cells with High Efficiency of 14.24% by Integrating Two Well-Complementary Nonfullerene Acceptors
    Jiang, Huanxiang
    Li, Xiaoming
    Wang, Jianing
    Qiao, Shanlin
    Zhang, Yong
    Zheng, Nan
    Chen, Weichao
    Li, Yonghai
    Yang, Renqiang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (34)
  • [4] Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%
    Liu, Tao
    Guo, Yuan
    Yi, Yuanping
    Huo, Lijun
    Xue, Xiaonan
    Sun, Xiaobo
    Fu, Huiting
    Xiong, Wentao
    Meng, Dong
    Wang, Zhaohui
    Liu, Feng
    Russell, Thomas P.
    Sun, Yanming
    ADVANCED MATERIALS, 2016, 28 (45) : 10008 - 10015
  • [5] Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors
    Yu, Runnan
    Yao, Huifeng
    Hou, Jianhui
    ADVANCED ENERGY MATERIALS, 2018, 8 (28)
  • [6] Ternary Blend Strategy for Achieving High-Efficiency Organic Solar Cells with Nonfullerene Acceptors Involved
    Liu, Xiaoyu
    Yan, Yajie
    Yao, Yao
    Liang, Ziqi
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (29)
  • [7] Nonfullerene Acceptors for Semitransparent Organic Solar Cells
    Dai, Shuixing
    Zhan, Xiaowei
    ADVANCED ENERGY MATERIALS, 2018, 8 (21)
  • [8] Nonfullerene Ternary Organic Solar Cell with Effective Charge Transfer between Two Acceptors
    Yang, Cheng
    Sun, Yang
    Li, Qicong
    Liu, Kong
    Xue, Xiaodi
    Huang, Yanbin
    Ren, Kuankuan
    Li, Long
    Chen, Yonghai
    Wang, Zhijie
    Qu, Shengchun
    Wang, Zhanguo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (03): : 927 - 934
  • [9] Nonfullerene acceptors comprising a naphthalene core for high efficiency organic solar cells
    Zhang, Zhe
    Cui, Xinyue
    Li, Miao
    Liu, Yahui
    Li, Dawei
    Jiang, Pengcheng
    Bo, Zhishan
    RSC ADVANCES, 2019, 9 (67) : 39163 - 39169
  • [10] Recent advances of nonfullerene acceptors in organic solar cells
    Zhou, Dan
    Wang, Jianru
    Xu, Zhentian
    Xu, Haitao
    Quan, Jianwei
    Deng, Jiawei
    Li, Yubing
    Tong, Yongfen
    Hu, Bin
    Chen, Lie
    NANO ENERGY, 2022, 103