Mapping Impervious Surface Areas Using Time-Series Nighttime Light and MODIS Imagery

被引:18
|
作者
Tang, Yun [1 ]
Shao, Zhenfeng [1 ]
Huang, Xiao [2 ]
Cai, Bowen [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Univ Arkansas, Dept Geosci, Fayetteville, AR 72701 USA
基金
中国国家自然科学基金;
关键词
impervious surface; nighttime light data; MODIS; spatiotemporal dynamics; ELECTRIC-POWER CONSUMPTION; REMOTE-SENSING IMAGES; PEARL RIVER DELTA; URBAN HEAT-ISLAND; DMSP-OLS; SPATIOTEMPORAL DYNAMICS; LARGE-SCALE; HUMAN SETTLEMENT; INTEGRATED USE; CHINA;
D O I
10.3390/rs13101900
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mapping impervious surface area (ISA) dynamics at the regional and global scales is an important task that supports the management of the urban environment and urban ecological systems. In this study, we aimed to develop a new method for ISA percentage (ISA%) mapping using Nighttime Light (NTL) and MODIS products. The proposed method consists of three major steps. First, we calculated the Enhanced Vegetation Index (EVI)-adjusted NTL index (EANTLI) and performed intra-annual and inter-annual corrections on the DMSP-OLS data. Second, based on the geographically weighted regression (GWR) model, we built a consistent NTL product from 2000 to 2019 by performing an intercalibration between DMSP-OLS and VIIRS images. Third, we adopted a GA-BP neural network model to monitor ISA% dynamics using NTL imagery, MODIS imagery, and population data. Taking the Guangdong-Hong Kong-Macao Greater Bay as the study area, our results indicate that the ISA% in our study area increased from 7.97% in 2000 to 17.11% in 2019, with a mean absolute error (MAE) of 0.0647, root mean square error (RMSE) of 0.1003, Pearson's coefficient of 0.9613, and R-2 (R-squared) of 0.9239. Specifically, these results demonstrate the effectiveness of the proposed method in mapping ISA and investigating ISA dynamics using temporal features extracted from consistent NTL and MODIS products. The proposed method is feasible when generating ISA% at a large scale at high frequency, given the ease of implementation and the availability of input data sources.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Mapping Global Urban Areas From 2000 to 2012 Using Time-Series Nighttime Light Data and MODIS Products
    Chen, Zuoqi
    Yu, Bailang
    Zhou, Yuyu
    Liu, Hongxing
    Yang, Chengshu
    Shi, Kaifang
    Wu, Jianping
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (04) : 1143 - 1153
  • [2] AUTOMATED MAPPING OF BURNED AREAS IN SEMI-ARID ECOSYSTEMS USING MODIS TIME-SERIES IMAGERY
    Hardtke, L. A.
    Blanco, P. D.
    del Valle, H. F.
    Metternicht, G. I.
    Sione, W. F.
    [J]. 36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 811 - 814
  • [3] Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery
    Hardtke, Leonardo A.
    Blanco, Paula D.
    del Valle, Hector F.
    Metternicht, Graciela I.
    Sione, Walter F.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 38 : 25 - 35
  • [4] An easily implemented method to estimate impervious surface area on a large scale from MODIS time-series and improved DMSP-OLS nighttime light data
    Pok, Sophak
    Matsushita, Bunkei
    Fukushima, Takehiko
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 133 : 104 - 115
  • [5] Mapping and estimating forest carbon absorption using time-series MODIS imagery in South Korea
    Su-Young, Cha
    Ung-Hwan, Pi
    Chong-Hwa, Park
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2013, 29 (05) : 517 - 525
  • [6] Extension and variability of impervious surface area revealed by nighttime light imagery
    Kawakubo, F. S.
    Mataveli, G. A. V.
    Justiniano, E. F.
    Guerrero, J. V. R.
    de Melo, B. M.
    dos Santos Junior, E. R.
    Marinho, R. S. S.
    Martines, M. R.
    Fantin, M.
    Pedrassoli, J. C.
    Morato, R. G.
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2024,
  • [7] Detecting Floodplain Inundation Frequency Using MODIS Time-series Imagery
    Huang, Chang
    Wu, Jianping
    Chen, Yun
    Yu, Jia
    [J]. 2012 FIRST INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2012, : 349 - 354
  • [8] Mapping cotton fields using data mining and MODIS time-series
    Werner, J. P. S.
    Oliveira, S. R. De M.
    Esquerdo, J. C. D. M.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (07) : 2457 - 2476
  • [9] Impervious surface mapping with Quickbird imagery
    Lu, Dengsheng
    Hetrick, Scott
    Moran, Emilio
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (09) : 2519 - 2533
  • [10] Land changes monitoring using MODIS time-series imagery in peat lands areas, Muaro Jambi, Jambi Province, Indonesia
    Nurdiana, Annisa
    Setiawan, Yudi
    Pawitan, Hidayat
    Prasetyo, Lilik Budi
    Permatasari, Prita Ayu
    [J]. 2ND INTERNATIONAL SYMPOSIUM ON LAPAN-IPB SATELLITE (LISAT) FOR FOOD SECURITY AND ENVIRONMENTAL MONITORING, 2016, 33 : 443 - 449