SIMULATION OF TOPPLING FAILURE OF ROCK SLOPE BY NUMERICAL MANIFOLD METHOD

被引:44
|
作者
Zhang, Guoxin [1 ]
Zhao, Yan [1 ]
Peng, Xiaochu [1 ]
机构
[1] China Inst Water Resources & Hydropower Res, Beijing 100038, Peoples R China
关键词
Second-order manifold method; toppling failure; rock-bridges; contact; crack propagation; MODEL;
D O I
10.1142/S0219876210002118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As one type of rock slope failures, topping failure can be accurately simulated only when several aspects are correctly calculated such as deformation and stress, contacts between blocks, contact stress, movement of blocks, open/close of contacts between blocks, development of failure plane, and crack generation and propagation. Current numerical methods encounter many difficulties in simulating toppling failure, especially for rock slope with lots of rock-bridges. Numerical manifold method (NMM) can deal with these highly discontinuous problems and be used to model the toppling failure of rock slopes. This paper first introduces the fundamental principles, modeling of contacts, calculation of contact force and stress, and modeling of failure in NMM. Then, several case studies are conducted to testify the accuracy and convergence of method; comparisons with method, based on limit equilibrium principle, which was proposed by Goodman and Bray (G-B method) and centrifuge test are conducted. Finally, the topping failure of left bank of one high dam is simulated. Results show that the NMM can be used to correctly calculate the toppling safety factor, simulate the failure process of slope toppling, and accurately model the whole failure process of rock slopes with many rock-bridges.
引用
收藏
页码:167 / 189
页数:23
相关论文
共 50 条
  • [1] Numerical Simulation of Rock Slope Toppling Based on Rheological Model
    Lei, Zhengqi
    Sha, Sha
    [J]. 2016 INTERNATIONAL CONFERENCE ON SMART CITY AND SYSTEMS ENGINEERING (ICSCSE), 2016, : 386 - 389
  • [2] Simulation of impact failure of jointed rock mass by numerical manifold method
    Liu Hong-yan
    Wang Gui-he
    [J]. ROCK AND SOIL MECHANICS, 2009, 30 (11) : 3523 - 3527
  • [3] Mechanical analysis of toppling failure of rock slope
    Liu Hai-jun
    Zhao Jian-jun
    Ju Neng-pan
    [J]. ROCK AND SOIL MECHANICS, 2016, 37 : 289 - 294
  • [4] Buckling failure analysis and numerical manifold method simulation for Malvern Hills slope
    Wang Qiu-sheng
    Zhang Rui-tao
    Zheng Hong
    [J]. ROCK AND SOIL MECHANICS, 2022, 43 (07) : 1951 - 1960
  • [5] A transfer coefficient method for rock slope toppling
    Liu, C. H.
    Jaksa, M. B.
    Meyers, A. G.
    [J]. CANADIAN GEOTECHNICAL JOURNAL, 2009, 46 (01) : 1 - 9
  • [6] Simulation of Seismic Dynamic Response and Post-failure Behavior of Jointed Rock Slope Using Explicit Numerical Manifold Method
    Zuyang Ye
    Jiahai Xie
    Ruili Lu
    Wei Wei
    Qinghui Jiang
    [J]. Rock Mechanics and Rock Engineering, 2022, 55 : 6921 - 6938
  • [7] Simulation of Seismic Dynamic Response and Post-failure Behavior of Jointed Rock Slope Using Explicit Numerical Manifold Method
    Ye, Zuyang
    Xie, Jiahai
    Lu, Ruili
    Wei, Wei
    Jiang, Qinghui
    [J]. ROCK MECHANICS AND ROCK ENGINEERING, 2022, 55 (11) : 6921 - 6938
  • [8] Microseismic Monitoring and Numerical Simulation of Rock Slope Failure
    Liang, Zhengzhao
    Xu, Nuwen
    Ma, Ke
    Tang, Shibin
    Tang, Chunan
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [9] A New Calculation Method to Flexural Toppling Failure of Anti-dipped Rock Slope
    Su Lijun
    Qu Xin
    Zhang Chonglei
    [J]. ADVANCING CULTURE OF LIVING WITH LANDSLIDES, VOL 4: DIVERSITY OF LANDSLIDE FORMS, 2017, : 483 - 488
  • [10] Simulation of Deformation Process Failure of Jointed Rock Masses Based on the Numerical Manifold Method
    Lin, Xing-Chao
    Zhang, Qiang
    Jin, Jiufeng
    Chen, Guangming
    Li, Jin-Hang
    [J]. FRONTIERS IN PHYSICS, 2022, 9