Efficient Sequential Monte Carlo With Multiple Proposals and Control Variates

被引:7
|
作者
Li, Wentao [1 ]
Chen, Rong [2 ]
Tan, Zhiqiang [2 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Fylde Coll, Lancaster LA1 4YF, England
[2] Rutgers State Univ, Dept Stat, Piscataway, NJ USA
基金
英国工程与自然科学研究理事会;
关键词
Auxiliary particle filter; Defensive proposal distribution; Filtering; Importance sampling; Regression; STOCHASTIC VOLATILITY; PARTICLE FILTER; SIMULATION; INFERENCE; SAMPLES; MODELS;
D O I
10.1080/01621459.2015.1006364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sequential Monte Carlo is a useful simulation-based method for online filtering of state-space models. For certain complex state-space models, a single proposal distribution is usually not satisfactory and using multiple proposal distributions is a general approach to address various aspects of the filtering problem. This article proposes an efficient method of using multiple proposals in combination with control variates. The likelihood approach of Tan (2004) is used in both resampling and estimation. The new algorithm is shown to be asymptotically more efficient than the direct use of multiple proposals and control variates. The guidance for selecting multiple proposals and control variates is also given. Numerical examples are used to demonstrate that the new algorithm can significantly improve over the bootstrap filter and auxiliary particle filter.
引用
收藏
页码:298 / 313
页数:16
相关论文
共 50 条
  • [1] Control variates techniques for Monte Carlo simulation
    Szechtman, R
    [J]. PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 144 - 149
  • [2] Robust control variates for monte carlo integration
    Gu, Jing
    Wolfe, Patrick J.
    [J]. 2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 279 - 283
  • [3] Control variates for quasi-Monte Carlo
    Hickernell, FJ
    Lemieux, C
    Owen, AB
    [J]. STATISTICAL SCIENCE, 2005, 20 (01) : 1 - 18
  • [4] Constrained Monte Carlo and the method of control variates
    Szechtman, R
    Glynn, PW
    [J]. WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 394 - 400
  • [5] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    [J]. BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [6] Efficient Monte Carlo pricing of European options using mean value control variates
    Pellizzari P.
    [J]. Decisions in Economics and Finance, 2001, 24 (2) : 107 - 126
  • [7] Coupling control variates for Markov chain Monte Carlo
    Goodman, Jonathan B.
    Lin, Kevin K.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (19) : 7127 - 7136
  • [8] Neural Control Variates for Monte Carlo Variance Reduction
    Wan, Ruosi
    Zhong, Mingjun
    Xiong, Haoyi
    Zhu, Zhanxing
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 533 - 547
  • [9] MONTE-CARLO, CONTROL VARIATES, AND STOCHASTIC ORDERING
    FISHMAN, GS
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01): : 187 - 204
  • [10] Monte Carlo integration with a growing number of control variates
    Portier, Francois
    Segers, Johan
    [J]. JOURNAL OF APPLIED PROBABILITY, 2019, 56 (04) : 1168 - 1186