Electron temperature control in low-pressure plasmas using a two-mesh-separation technique

被引:18
|
作者
Dhayal, M
Forder, D
Short, RD
Bradley, JW
机构
[1] Univ Manchester, Dept Phys, Manchester M60 1QD, Lancs, England
[2] Univ Sheffield, Dept Mat Engn, Sheffield S1 3JD, S Yorkshire, England
关键词
low-pressure plasma processing; electron temperature control; mesh separation; Langmuir probe; ion energy control;
D O I
10.1016/S0042-207X(02)00769-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Independent control over the electron temperature and ion bombarding flux has been achieved in weakly ionised discharge through the use of two electrically biased meshes. The meshes divide the discharge into two parts; a main RF plasma and de processing plasma, the latter is sustained through controlled diffusion of particles from the main plasma. By varying the bias to each of the grids separately, and at typical pressures of 2.6 Pa in the processing chamber, the electron temperatures can be varied in the range 0.2-5.6 eV. To an electrically isolated surface, the ion bombarding fluxes can be controlled between 0.2 and 5.4 x 10(18) m(2) s(-1). This method of electron temperature control, which gives more flexibility than the single grid separation technique, allows ion energies to be varied from 1 to 27 eV, independently of the ion flux. This is useful, both for the fundamental study of plasma-surface interactions and for developing discharges with controlled parameters to tailor the properties of materials such as polymeric surfaces. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [1] Using OES to determine electron temperature and density in low-pressure nitrogen and argon plasmas
    Zhu, Xi-Ming
    Pu, Yi-Kang
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2008, 17 (02):
  • [2] Electron cooling in decaying low-pressure plasmas
    Celik, Yusuf
    Tsankov, Tsanko V.
    Aramaki, Mitsutoshi
    Yoshimura, Shinji
    Luggenhoelscher, Dirk
    Czarnetzki, Uwe
    [J]. PHYSICAL REVIEW E, 2012, 85 (04):
  • [3] Determination of electron temperature in low-pressure plasmas by means of optical emission spectroscopy
    S. Mitic
    B. A. Klumov
    M. Y. Pustylnik
    G. E. Morfill
    [J]. JETP Letters, 2010, 91 : 231 - 235
  • [4] Determination of electron temperature in low-pressure plasmas by means of optical emission spectroscopy
    Mitic, S.
    Klumov, B. A.
    Pustylnik, M. Y.
    Morfill, G. E.
    [J]. JETP LETTERS, 2010, 91 (05) : 231 - 235
  • [5] Two-resonance probe for measuring electron density in low-pressure plasmas
    Kim, D. W.
    You, S. J.
    Kim, S. J.
    Kim, J. H.
    Oh, W. Y.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (04):
  • [6] Measuring Electron Temperature Using Pulsed and Floating Probe Method in Low-Pressure Gas Discharge Plasmas
    Katahira, Takeshi
    Ohuchi, Mikio
    Sato, Shuichi
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (10) : 3602 - 3608
  • [7] Separation Control on a Low-Pressure Turbine Blade using Microjets
    Fernandez, Erik
    Kumar, Rajan
    Alvi, Farrukh
    [J]. JOURNAL OF PROPULSION AND POWER, 2013, 29 (04) : 867 - 881
  • [8] Determination of the neutral gas temperature of nitrogen-containing low-pressure plasmas using a two-temperature model
    Linss, V
    Kupfer, H
    Peter, S
    Richter, F
    [J]. SURFACE & COATINGS TECHNOLOGY, 2005, 200 (5-6): : 1696 - 1701
  • [9] ELECTRON TEMPERATURES AND ELECTRON CONCENTRATIONS AT LOW-PRESSURE IN MICROWAVE INDUCED PLASMAS
    BRASSEM, P
    MAESSEN, FJM
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1974, 29 (7-8) : 203 - 210
  • [10] Electron energy distribution function in low-pressure complex plasmas
    Ostrikov, K
    Denysenko, I
    Yu, MY
    Xu, S
    [J]. JOURNAL OF PLASMA PHYSICS, 2005, 71 : 217 - 224