Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging

被引:154
|
作者
Halicek, Martin [1 ,2 ,3 ]
Lu, Guolan [1 ,2 ]
Little, James V. [4 ]
Wang, Xu [5 ]
Patel, Mihir [6 ,7 ]
Griffith, Christopher C. [4 ]
El-Deiry, Mark W. [6 ,7 ]
Chen, Amy Y. [6 ,7 ]
Fei, Baowei [1 ,2 ,7 ,8 ,9 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Med Coll Georgia, Augusta, GA 30912 USA
[4] Emory Univ, Sch Med, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
[5] Emory Univ, Sch Med, Dept Hematol & Med Oncol, Atlanta, GA USA
[6] Emory Univ, Sch Med, Dept Otolaryngol, Atlanta, GA USA
[7] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[8] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[9] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
hyperspectral imaging; convolutional neural network; cancer detection; deep learning; image-guided surgery;
D O I
10.1117/1.JBO.22.6.060503
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural network (CNN) classifier is developed to classify excised, squamous-cell carcinoma, thyroid cancer, and normal head and neck tissue samples using HSI. The CNN classification was validated by the manual annotation of a pathologist specialized in head and neck cancer. The preliminary results of 50 patients indicate the potential of HSI and deep learning for automatic tissue-labeling of surgical specimens of head and neck patients. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Optical Biopsy of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks
    Halicek, Martin
    Little, James V.
    Wang, Xu
    Patel, Mihir
    Griffith, Christopher C.
    El-Deiry, Mark W.
    Chen, Amy Y.
    Fei, Baowei
    OPTICAL IMAGING, THERAPEUTICS, AND ADVANCED TECHNOLOGY IN HEAD AND NECK SURGERY AND OTOLARYNGOLOGY 2018, 2018, 10469
  • [2] Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks
    Hahoek, Martin
    Little, James, V
    Wang, Xu
    Chen, Amy Y.
    Fei, Baowei
    JOURNAL OF BIOMEDICAL OPTICS, 2019, 24 (03)
  • [3] Tumor Margin Classification of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks
    Halicek, Martin
    Little, James V.
    Wang, Xu
    Patel, Mihir
    Griffith, Christopher C.
    Chen, Amy Y.
    Fei, Baowei
    MEDICAL IMAGING 2018: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2018, 10576
  • [4] Robust Tissue Differentiation in Head and Neck Cancer: Ex-vivo Study with Hyperspectral Imaging and Convolutional Neural Networks
    Lotfy, Mayar
    Zhang, Xiaohan
    Hauger, Christoph
    Giannantonio, Tommaso
    Alperovich, Anna
    Holm, Felix
    Navab, Nassir
    Boehm, Felix
    Schwamborn, Carolin
    Hoffmann, Thomas K.
    Schuler, Patrick J.
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS XIII, 2023, 12770
  • [5] Deep convolutional neural networks for classifying breast cancer using infrared thermography
    Torres-Galvan, Juan Carlos
    Guevara, Edgar
    Kolosovas-Machuca, Eleazar Samuel
    Oceguera-Villanueva, Antonio
    Flores, Jorge L.
    Gonzalez, Francisco Javier
    QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL, 2022, 19 (04) : 283 - 294
  • [6] Adaptive deep learning for head and neck cancer detection using hyperspectral imaging
    Ma, Ling
    Lu, Guolan
    Wang, Dongsheng
    Qin, Xulei
    Chen, Zhuo Georgia
    Fei, Baowei
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2019, 2 (01)
  • [7] Adaptive deep learning for head and neck cancer detection using hyperspectral imaging
    Ling Ma
    Guolan Lu
    Dongsheng Wang
    Xulei Qin
    Zhuo Georgia Chen
    Baowei Fei
    Visual Computing for Industry, Biomedicine, and Art, 2
  • [8] Hyperspectral Data Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2129 - 2132
  • [9] Semantic Segmentation of Hyperspectral Imaging Using Convolutional Neural Networks
    A. Mukhin
    G. Danil
    R. Paringer
    Optical Memory and Neural Networks, 2022, 31 : 38 - 47
  • [10] Semantic Segmentation of Hyperspectral Imaging Using Convolutional Neural Networks
    Mukhin, A.
    Danil, G.
    Paringer, R.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2022, 31 (SUPPL 1) : 38 - 47