Large deviations for stochastic flows of diffeomorphisms

被引:27
|
作者
Budhiraja, Amarjit [1 ]
Dupuis, Paul [2 ]
Maroulas, Vasileios [3 ]
机构
[1] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
deformable templates; diffeomorphisrns; image matching; infinite-dimensional Brownian motion; infinite-dimensional SDEs; large deviations; semimartingales with a spatial parameter; small noise asymptotics; stochastic flows; DIFFERENTIAL-EQUATIONS; SYSTEMS;
D O I
10.3150/09-BEJ203
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A large deviation principle is established for a general class of stochastic flows in the small noise limit. This result is then applied to a Bayesian formulation of an image matching problem, and an approximate maximum likelihood property is shown for the solution of an optimization problem involving the large deviations rate function.
引用
收藏
页码:234 / 257
页数:24
相关论文
共 50 条