High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry

被引:153
|
作者
Spraggins, Jeffrey M. [1 ,2 ,3 ,4 ]
Djambazova, Katerina V. [2 ,3 ]
Rivera, Emilio S. [1 ,3 ]
Migas, Lukasz G. [5 ]
Neumann, Elizabeth K. [1 ,3 ]
Fuetterer, Arne [6 ]
Suetering, Juergen [6 ]
Goedecke, Niels [6 ]
Ly, Alice [6 ]
Van de Plas, Raf [1 ,3 ,5 ]
Caprioli, Richard M. [1 ,2 ,3 ,7 ]
机构
[1] Vanderbilt Univ, Dept Biochem, 607 Light Hall, Nashville, TN 37205 USA
[2] Vanderbilt Univ, Dept Chem, 7330 Stevenson Ctr,Stn B 351822, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Mass Spectrometry Res Ctr, 465 21st Ave S 9160, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Dept Med, 465 21st Ave S 9160, Nashville, TN 37235 USA
[5] Delft Univ Technol, DCSC, NL-2628 CD Delft, Netherlands
[6] Bruker Daltonik GmbH, Fahrenheitstr 4, D-28359 Bremen, Germany
[7] Vanderbilt Univ, Dept Pharmacol, 2220 Pierce Ave, Nashville, TN 37232 USA
基金
美国国家科学基金会;
关键词
HIGH-RESOLUTION; DRIFT-TUBE; TISSUE; SECTIONS; PROTEINS; TOF; ELECTROSPRAY; LOCALIZATION; FUNDAMENTALS; ACQUISITION;
D O I
10.1021/acs.analchem.9b03612
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Imaging mass spectrometry (IMS) enables the spatially targeted molecular assessment of biological tissues at cellular resolutions. New developments and technologies are essential for uncovering the molecular drivers of native physiological function and disease. Instrumentation must maximize spatial resolution, throughput, sensitivity, and specificity, because tissue imaging experiments consist of thousands to millions of pixels. Here, we report the development and application of a matrix-assisted laser desorption/ionization (MALDI) trapped ion-mobility spectrometry (TIMS) imaging platform. This prototype MALDI timsTOF instrument is capable of 10 mu m spatial resolutions and 20 pixels/s throughput molecular imaging. The MALDI source utilizes a Bruker SmartBeam 3-D laser system that can generate a square burn pattern of <10 x 10 mu m at the sample surface. General image performance was assessed using murine kidney and brain tissues and demonstrate that high-spatial-resolution imaging data can be generated rapidly with mass measurement errors <5 ppm and similar to 40 000 resolving power. Initial TIMS-based imaging experiments were performed on whole-body mouse pup tissue demonstrating the separation of closely isobaric [PC(32:0) + Na](+) and [PC(34:3)(+) H](+) (3 mDa mass difference) in the gas phase. We have shown that the MALDI timsTOF platform can maintain reasonable data acquisition rates (>2 pixels/s) while providing the specificity necessary to differentiate components in complex mixtures of lipid adducts. The combination of high-spatial-resolution and throughput imaging capabilities with high-performance TIMS separations provides a uniquely tunable platform to address many challenges associated with advanced molecular imaging applications.
引用
收藏
页码:14552 / 14560
页数:9
相关论文
共 50 条
  • [1] Imaging Mass Spectrometry of Isotopically Resolved Intact Proteins on a Trapped Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometer
    Klein, Dustin R.
    Rivera, Emilio S.
    Caprioli, Richard M.
    Spraggins, Jeffrey M.
    ANALYTICAL CHEMISTRY, 2024, 96 (13) : 5065 - 5070
  • [2] MALDI-2 on a Trapped Ion Mobility Quadrupole Time-of-Flight Instrument for Rapid Mass Spectrometry Imaging and Ion Mobility Separation of Complex Lipid Profiles
    Soltwisch, Jens
    Heijs, Bram
    Koch, Annika
    Vens-Cappell, Simeon
    Hoehndorf, Jens
    Dreisewerd, Klaus
    ANALYTICAL CHEMISTRY, 2020, 92 (13) : 8697 - 8703
  • [3] Protein mixture analysis by MALDI/mobility/time-of-flight mass spectrometry
    Russell, DH
    Gillig, KJ
    Stone, E
    Park, ZY
    Fuhrer, K
    Gonin, M
    Schultz, AJ
    ADVANCES IN NUCLEIC ACID AND PROTEIN ANALYSES, MANIPULATION, AND SEQUENCING, 2000, 1 : 69 - 78
  • [4] IR-MALDI-LDI combined with ion mobility orthogonal time-of-flight mass spectrometry
    Woods, Amina S.
    Ugarov, Michael
    Jackson, Shelley N.
    Egan, Thomas
    Wang, Hay-Yan J.
    Murray, Kermit K.
    Schultz, J. Albert
    JOURNAL OF PROTEOME RESEARCH, 2006, 5 (06) : 1484 - 1487
  • [5] Multidimensional nested ion-mobility/time-of-flight mass spectrometry for the analysis of complex biological mixtures.
    Clemmer, DE
    Hyzler, CSH
    Srebalus, CA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 222 : U9 - U9
  • [6] Trapped ion mobility spectrometry time-of-flight mass spectrometry for high throughput and high resolution characterization of human milk oligosaccharide isomers
    Delvaux, Aurelie
    Rathahao-Paris, Estelle
    Guillon, Blanche
    Cholet, Sophie
    Adel-Patient, Karine
    Fenaille, Francois
    Junot, Christophe
    Alves, Sandra
    ANALYTICA CHIMICA ACTA, 2021, 1180
  • [7] Modern MALDI time-of-flight mass spectrometry
    Vestal, Marvin L.
    JOURNAL OF MASS SPECTROMETRY, 2009, 44 (03): : 303 - 317
  • [8] Histone Modification Screening using Liquid Chromatography, Trapped Ion Mobility Spectrometry, and Time-Of-Flight Mass Spectrometry
    Fernandez-Rojas, Meiby
    Fuller, Cassandra N.
    Tose, Lilian Valadares
    Willetts, Matthew
    Park, Melvin A.
    Bhanu, Natarajan, V
    Garcia, Benjamin A.
    Fernandez-Lima, Francisco
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2024, (203):
  • [9] Dynamically multiplexed ion mobility time-of-flight mass spectrometry
    Belov, Mikhail E.
    Clowers, Brian H.
    Prior, David C.
    Danielson, William F., III
    Liyu, Andrei V.
    Petritis, Brianne O.
    Smith, Richard D.
    ANALYTICAL CHEMISTRY, 2008, 80 (15) : 5873 - 5883
  • [10] Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry
    Tose, Lilian V.
    Benigni, Paolo
    Leyva, Dennys
    Sundberg, Abigail
    Ramirez, Cesar E.
    Ridgeway, Mark E.
    Park, Melvin A.
    Romao, Wanderson
    Jaffe, Rudolf
    Fernandez-Lima, Francisco
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2018, 32 (15) : 1287 - 1295