On normal approximation for strongly mixing random variables

被引:8
|
作者
Sunklodas, J. [1 ]
机构
[1] Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
normal approximation; bounded Lipschitz metric; strong mixing condition; weakly dependent random variables; Stein's method;
D O I
10.1007/s10440-007-9122-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we estimate the difference | Eh(Z(n))- Eh(N)|, where Z(n) is the sum of n centered and normalized random variables (without the stationarity assumption) satisfying the strong mixing condition, N is a standard normal random variable, and h : R -> R is a Lipschitz function. In particular cases, the obtained upper bounds are of order O(n(-1/2)).
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条