Octahedral Pd@Pt1.8Ni Core-Shell Nanocrystals with Ultrathin PtNi Alloy Shells as Active Catalysts for Oxygen Reduction Reaction

被引:306
|
作者
Zhao, Xu [1 ,2 ,3 ]
Chen, Sheng [1 ,2 ,3 ]
Fang, Zhicheng [1 ,2 ,3 ]
Ding, Jia [1 ,2 ,3 ]
Sang, Wei [1 ,2 ,3 ]
Wang, Youcheng [1 ,2 ,3 ]
Zhao, Jin [1 ,2 ,3 ]
Peng, Zhenmeng [4 ]
Zeng, Jie [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China
[4] Univ Akron, Dept Chem & Biomol Engn, Akron, OH 44325 USA
关键词
PLATINUM-MONOLAYER ELECTROCATALYSTS; FORMIC-ACID OXIDATION; MEMBRANE FUEL-CELLS; NANOPARTICLES; SURFACE; PD; DURABILITY;
D O I
10.1021/ja511596c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Forming core-shell and alloy structures offers generally two ways to design efficient Pt-based catalysts for oxygen reduction reaction (ORR). Here, we combined these two strategies and invented a versatile aqueous route to synthesize octahedral Pd@Pt1.8Ni core-shell nanocrystals. The Pt/Ni atomic ratios in the resultant shells can be varied from 0.6 to 1.8, simply by changing the amounts of Pt and Ni precursors, with the other conditions unchanged. Experimental studies showed that the mass activities of as-prepared catalysts were 5 times higher than that of the commercial Pt/C. We believe that the ultrathin PtNi shells enclosed by {111} facets made it possible to reduce the Pt content while retaining the catalytic activity toward ORR. This strategy may be extended to the preparation of other multimetallic nanocrystals with shaped and ultrathin alloy shells, which is conducive to design highly active catalysts.
引用
收藏
页码:2804 / 2807
页数:4
相关论文
共 50 条
  • [1] Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction
    20151100628607
    Peng, Zhenmeng (zpeng@uakron.edu), 1600, American Chemical Society (137):
  • [3] Catalysts for oxygen reduction reaction based on nanocrystals of a Pt or Pt–Pd alloy shell supported on a Au core
    L. B. Venarusso
    J. Bettini
    G. Maia
    Journal of Solid State Electrochemistry, 2016, 20 : 1753 - 1764
  • [4] Catalysts for oxygen reduction reaction based on nanocrystals of a Pt or Pt-Pd alloy shell supported on a Au core
    Venarusso, L. B.
    Bettini, J.
    Maia, G.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (06) : 1753 - 1764
  • [5] Highly Active Carbon Supported Core-Shell PtNi@Pt Nanoparticles for Oxygen Reduction Reaction
    Li, Wenzhen
    Haldar, Pradeep
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (05) : B47 - B49
  • [6] Enhanced Electrocatalytic Performance of Processed, Ultrathin, Supported Pd-Pt Core-Shell Nanowire Catalysts for the Oxygen Reduction Reaction
    Koenigsmann, Christopher
    Santulli, Alexander C.
    Gong, Kuanping
    Vukmirovic, Miomir B.
    Zhou, Wei-ping
    Sutter, Eli
    Wong, Stanislaus S.
    Adzic, Radoslav R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (25) : 9783 - 9795
  • [7] Effect of heat treatment on the surface structure of Pd@Pt-Ni core-shell catalysts for the oxygen reduction reaction
    Cai, Xin
    Lin, Rui
    Liu, Xin
    Zhao, Yichen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884 (884)
  • [8] Pd@Pt core-shell concave decahedra: A class of catalysts for enhancing the oxygen reduction reaction
    Vara, Madeline
    Wang, Xue
    Luo, Ming
    Huang, Hongwen
    Ruditskiy, Aleksey
    Park, Jinho
    Bao, Shixiong
    Liu, Jingyue
    Howe, Jane
    Chi, Miaofang
    Xie, Zhaoxiong
    Xia, Younan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [9] Shell-thickness-dependent Pd@PtNi core-shell nanosheets for efficient oxygen reduction reaction
    Chen, Qiuyan
    Chen, Zhenyu
    Ali, Asad
    Luo, Yeqiang
    Feng, Huiyan
    Luo, Yuanyan
    Tsiakaras, Panagiotis
    Shen, Pei Kang
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [10] Core-shell Pt modified Pd/C as an active and durable electrocatalyst for the oxygen reduction reaction in PEMFCs
    Zhang, Geng
    Shao, Zhi-Gang
    Lu, Wangting
    Xie, Feng
    Xiao, Hui
    Qin, Xiaoping
    Yi, Baolian
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 132 : 183 - 194