Weyl-Heisenberg frames for subspaces of L2 (R)

被引:73
|
作者
Casazza, PG [1 ]
Christensen, O
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
关键词
D O I
10.1090/S0002-9939-00-05731-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Weyl-Heisenberg frame {E(mb)T(na)g}(m, n Z) = {e(2 pi imb(.)) g(.-na)}(m, n is an element of Z) for L-2 (R) allows every function f is an element of L-2(R) to be written as an infinite linear combination of translated and modulated versions of the fixed function g is an element of L-2(R). In the present paper we find sufficient conditions for {E(mb)T(na)g}(m, n is an element of Z) to be a frame for <(span)over bar>{E(mb)T(na)g}(m, n is an element of Z), which, in general, might just be a subspace of L-2(R). Even our condition for {E(mb)T(na)g}(m, n is an element of Z) to be a frame for L-2(R) is significantly weaker than the previous known conditions. The results also shed new light on the classical results concerning frames for L-2(R), showing for instance that the condition G(x) := Sigma(n is an element of Z)\g(x - na)\(2) > A > 0 is not necessary for {E(mb)T(na)g}(m, n is an element of Z) to be a frame for <(span)over bar>{E(mb)T(na)g}(m, n is an element of Z). Our work is inspired by a recent paper by Benedetto and Li, where the relationship between the zero-set of the function G and frame properties of the set of functions f g(. - n)}(n is an element of Z) is analyzed.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 50 条
  • [1] Tight Weyl-Heisenberg frames in l2
    Cvetkovic, Z
    Vetterli, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (05) : 1256 - 1259
  • [2] Irregular Weyl-Heisenberg wave packet frames in L2 (R)
    Sah, A. K.
    Vashisht, L. K.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (01): : 61 - 74
  • [3] PERTURBATION OF IRREGULAR WEYL-HEISENBERG WAVE PACKET FRAMES IN L2(R)
    Kumar, Raj
    Sah, Ashok K.
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (04) : 789 - 799
  • [4] Weyl-Heisenberg frames and Balian-Low theorem in l2(Z)
    Poumai, K. T.
    Kaushik, S. K.
    Mantry, P.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)
  • [5] Subspace Weyl-Heisenberg frames
    Jean-Pierre Gabardo
    Deguang Han
    [J]. Journal of Fourier Analysis and Applications, 2001, 7 : 419 - 433
  • [6] Subspace Weyl-Heisenberg frames
    Gabardo, JP
    Han, DG
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (04) : 419 - 433
  • [7] Weyl-Heisenberg frames and Riesz bases in L-2(IRd)
    Ron, A
    Shen, ZW
    [J]. DUKE MATHEMATICAL JOURNAL, 1997, 89 (02) : 237 - 282
  • [8] Fractional Weyl-Heisenberg Frames and Applications
    V. B. Shakhmurov
    [J]. Sampling Theory in Signal and Image Processing, 2004, 3 (3): : 227 - 256
  • [9] On rationally oversampled Weyl-Heisenberg frames
    Janssen, A.J.E.M.
    [J]. Signal Processing, 1995, 47 (03): : 239 - 245
  • [10] A NOTE ON GENERALIZED WEYL-HEISENBERG FRAMES
    DAHLKE, S
    [J]. APPLIED MATHEMATICS LETTERS, 1994, 7 (03) : 79 - 82