PERFECT STATE TRANSFER, INTEGRAL CIRCULANTS, AND JOIN OF GRAPHS

被引:0
|
作者
Angeles-Canul, Ricardo J. [2 ]
Norton, Rachael M. [3 ]
Opperman, Michael C. [4 ]
Paribello, Christopher C. [5 ]
Russell, Matthew C. [6 ]
Tamon, Christino [1 ]
机构
[1] Clarkson Univ, Dept Comp Sci, Potsdam, NY 13699 USA
[2] Univ Autonoma Estado Hidalgo, Ctr Invest Matemat, Pachuca, Hidalgo, Mexico
[3] Bowdoin Coll, Dept Math, Brunswick, ME 04011 USA
[4] Clarkson Univ, Dept Math, Potsdam, NY 13699 USA
[5] Clarkson Univ, Dept Math & Comp Sci, Potsdam, NY 13699 USA
[6] Taylor Univ, Dept Math, Upland, IN 46989 USA
基金
美国国家科学基金会;
关键词
Quantum walks; perfect state transfer; integral circulants; join of graphs; QUANTUM WALKS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose new families of graphs which exhibit quantum perfect state transfer. Our constructions are based on the join operator on graphs, its circulant generalizations, and the Cartesian product of graphs. We build upon the results of Basic and Petkovic (Applied Mathematics Letters 22(10):1609-1615, 2009) and construct new integral circulants and regular graphs with perfect state transfer. More specifically, we show that the integral circulant ICG(n) (2,n/2(b) boolean OR Q) has perfect state transfer, where b is an element of 1,2, n is a multiple of 16 and Q is a subset of the odd divisors of n. Using the standard join of graphs, we also show a family of double-cone graphs which are non-periodic but exhibit perfect state transfer. This class of graphs is constructed by simply taking the join of the empty two-vertex graph with a specific class of regular graphs. This answers a question posed by Godsil (arxiv.org math/08062074).
引用
收藏
页码:325 / 342
页数:18
相关论文
共 50 条
  • [1] Perfect state transfer, integral circulants, and join of graphs
    Angeles-Canul, Ricardo J.
    Norton, Rachael M.
    Opperman, Michael C.
    Paribello, Christopher C.
    Russell, Matthew C.
    Tamon, Christino
    [J]. Quantum Information and Computation, 2010, 10 (3-4): : 0325 - 0342
  • [2] QUANTUM PERFECT STATE TRANSFER ON WEIGHTED JOIN GRAPHS
    Javier Angeles-Canul, Ricardo
    Norton, Rachael M.
    Opperman, Michael C.
    Paribello, Christopher C.
    Russell, Matthew C.
    Tamon, Christino
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (08) : 1429 - 1445
  • [3] Perfect state transfer in integral circulant graphs
    Basic, Milan
    Petkovic, Marko D.
    Stevanovic, Dragan
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (07) : 1117 - 1121
  • [4] Further results on the perfect state transfer in integral circulant graphs
    Petkovic, Marko D.
    Basic, Milan
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) : 300 - 312
  • [5] PERFECT STATE TRANSFER ON GRAPHS WITH A POTENTIAL
    Kempton, Mark
    Lippner, Gabor
    Yau, Shing-Tung
    [J]. QUANTUM INFORMATION & COMPUTATION, 2017, 17 (3-4) : 303 - 327
  • [6] PERFECT STATE TRANSFER ON SIGNED GRAPHS
    Brown, John
    Godsil, Chris
    Mallory, Devlin
    Raz, Abigail
    Tamon, Christino
    [J]. QUANTUM INFORMATION & COMPUTATION, 2013, 13 (5-6) : 511 - 530
  • [7] Perfect state transfer on oriented graphs
    Godsil, Chris
    Lato, Sabrina
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 604 : 278 - 292
  • [8] Perfect state transfer in cubelike graphs
    Cheung, Wang-Chi
    Godsil, Chris
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2468 - 2474
  • [9] PERFECT STATE TRANSFER ON QUOTIENT GRAPHS
    Bachman, Rachel
    Predette, Eric
    Fuller, Jessica
    Landry, Michael
    Opperman, Michael
    Tamon, Christino
    Tollefson, Andrew
    [J]. QUANTUM INFORMATION & COMPUTATION, 2012, 12 (3-4) : 293 - 313
  • [10] Perfect state transfer in integral circulant graphs of non-square-free order
    Basic, Milan
    Petkovic, Marko D.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) : 149 - 163