A LEAST-SQUARES FINITE ELEMENT REDUCED BASIS METHOD

被引:0
|
作者
Chaudhry, Jehanzeb H. [1 ]
Olson, Luke N. [2 ]
Sentz, Peter [2 ]
机构
[1] Univ New Mexico, Dept Math, Albuquerque, NM 87131 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 02期
关键词
least-squares; finite elements; reduced basis; POSTERIORI ERROR ESTIMATION; PETROV-GALERKIN PROJECTION; NAVIER-STOKES EQUATIONS; EMPIRICAL INTERPOLATION; BASIS APPROXIMATION; BOUNDS;
D O I
10.1137/20M1323552
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a reduced basis method for parametrized linear elliptic partial differential equations (PDEs) in a least-squares finite element framework. A rigorous and reliable error estimate is developed, and is shown to bound the error with respect to the exact solution of the PDE, in contrast to estimates that measure error with respect to a finite-dimensional (high-fidelity) approximation. It is shown that the first-order formulation of the least-squares finite element is a key ingredient. The method is demonstrated using numerical examples.
引用
收藏
页码:A1081 / A1107
页数:27
相关论文
共 50 条
  • [1] Moving least-squares finite element method
    Musivand-Arzanfudi, M.
    Hosseini-Toudeshky, H.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2007, 221 (09) : 1019 - 1037
  • [2] Dual least-squares finite element method with stabilization
    Lee, Eunjung
    Na, Hyesun
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2975 - 2997
  • [3] An investigation of the least-squares finite element method in electromagnetism
    Kot, J
    [J]. COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 251 - 261
  • [4] Least-squares finite-element lattice Boltzmann method
    Li, YS
    LeBoeuf, EJ
    Basu, PK
    [J]. PHYSICAL REVIEW E, 2004, 69 (06):
  • [5] Least-squares mixed generalized multiscale finite element method
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 : 764 - 787
  • [6] Least-squares finite element method for ordinary differential equations
    Chung, Matthias
    Krueger, Justin
    Liu, Honghu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 418
  • [7] Least-squares mixed finite element method for Sobolev equations
    Gu, HM
    Yang, DP
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (05): : 505 - 517
  • [8] Finite element methods of least-squares type
    Bochev, PB
    Gunzburger, MD
    [J]. SIAM REVIEW, 1998, 40 (04) : 789 - 837
  • [9] Discrete least-squares finite element methods
    Keith, Brendan
    Petrides, Socratis
    Fuentes, Federico
    Demkowicz, Leszek
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 226 - 255
  • [10] The condition of the least-squares finite element matrices
    Fried, Isaac
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 106 (09) : 760 - 770