GCNNIRec: Graph Convolutional Networks with Neighbor Complex Interactions for Recommendation

被引:0
|
作者
Mei, Teng [1 ]
Sun, Tianhao [1 ]
Chen, Renqin [1 ]
Zhou, Mingliang [1 ]
Hou, Leong U. [2 ]
机构
[1] Chongqing Univ, Chongqing 400044, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Taipa 999078, Macau, Peoples R China
来源
关键词
Recommender system; Graph neural networks; Neighbor interactions;
D O I
10.1007/978-3-030-85899-5_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, tremendous efforts have been made to explore features contained in user-item graphs for recommendation based on Graph Neural Networks (GNN). However, most existing recommendation methods based on GNN use weighted sum of directly-linked node's features only, assuming that neighboring nodes are independent individuals, neglecting possible correlations between neighboring nodes, which may result in failure of capturing co-occurrence signals. Therefore, in this paper, we propose a novel Graph Convolutional Network with Neighbor complex Interactions for Recommendation (GCNNIRec) focused upon capturing possible co-occurrence signals between node neighbors. Specifically, two types of modules, the Linear-Aggregator module and the InteractionAggregator module are both inside GCNNIRec. The former module linearly aggregates the features of neighboring nodes to obtain the representation of target node. The latter utilizes the interactions between neighbors to aggregate the co-occurrence features of nodes to capture co-occurrence features. Furthermore, empirical results on three real datasets confirm not only the state-of-the-art performance of GCNNIRec but also the performance gains achieved by introducing Interaction-Aggregator module into GNN.
引用
收藏
页码:338 / 347
页数:10
相关论文
共 50 条
  • [1] Neighbor enhanced graph convolutional networks for node classification and recommendation
    Chen, Hao
    Huang, Zhong
    Xu, Yue
    Deng, Zengde
    Huang, Feiran
    He, Peng
    Li, Zhoujun
    KNOWLEDGE-BASED SYSTEMS, 2022, 246
  • [2] Bundle Recommendation with Graph Convolutional Networks
    Chang, Jianxin
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1673 - 1676
  • [3] Cliques of Graph Convolutional Networks for Recommendation
    Pan, Zhenye
    Chen, Yahong
    IEEE ACCESS, 2024, 12 : 70053 - 70064
  • [4] Neighbor Relation-Aware Graph Convolutional Network for Recommendation
    Sun, Aijing
    Wang, Guoqing
    Computer Engineering and Applications, 2023, 59 (09): : 112 - 122
  • [5] Neighbor Interaction Aware Graph Convolution Networks for Recommendation
    Sun, Jianing
    Zhang, Yingxue
    Guo, Wei
    Guo, Huifeng
    Tang, Ruiming
    He, Xiuqiang
    Ma, Chen
    Coates, Mark
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1289 - 1298
  • [6] Incorporating Price into Recommendation With Graph Convolutional Networks
    Zheng, Yu
    Gao, Chen
    He, Xiangnan
    Jin, Depeng
    Li, Yong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1609 - 1623
  • [7] DGCN: Diversified Recommendation with Graph Convolutional Networks
    Zheng, Yu
    Gao, Chen
    Chen, Liang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 401 - 412
  • [8] Embedding Disentanglement in Graph Convolutional Networks for Recommendation
    Zhu, Tianyu
    Sun, Leilei
    Chen, Guoqing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 431 - 442
  • [9] Multi-neighbor social recommendation with attentional graph convolutional network
    Zhang, Min
    Liao, Xiao
    Wang, Xinlei
    Wang, Xiaojuan
    Jin, Lei
    DATA MINING AND KNOWLEDGE DISCOVERY, 2025, 39 (03)
  • [10] Integrating label propagation with graph convolutional networks for recommendation
    Zhang, Yihao
    Yuan, Meng
    Zhao, Chu
    Chen, Mian
    Liu, Xiaoyang
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10): : 8211 - 8225