The McKean-Vlasov Equation in Finite Volume

被引:35
|
作者
Chayes, L. [2 ]
Panferov, V. [1 ]
机构
[1] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90059 USA
关键词
Phase transitions; Mean-field approximation; Kirkwood-Monroe equation; H-stability; LIQUID-VAPOR TRANSITION; WAALS-MAXWELL THEORY; LIMIT; SYSTEMS; VAN; SEGREGATION; INSTABILITY; DYNAMICS; MODEL;
D O I
10.1007/s10955-009-9913-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the McKean-Vlasov equation on the finite tori of length scale L in d-dimensions. We derive the necessary and sufficient conditions for the existence of a phase transition, which are based on the criteria first uncovered in Gates and Penrose (Commun. Math. Phys. 17: 194-209, 1970) and Kirkwood and Monroe (J. Chem. Phys. 9: 514-526, 1941). Therein and in subsequent works, one finds indications pointing to critical transitions at a particular model dependent value, theta(#) of the interaction parameter. We show that the uniform density (which may be interpreted as the liquid phase) is dynamically stable for theta < theta(#) and prove, abstractly, that a critical transition must occur at theta = theta(#). However for this system we show that under generic conditions-L large, d >= 2 and isotropic interactions-the phase transition is in fact discontinuous and occurs at some theta(T) < theta(#). Finally, for H-stable, bounded interactions with discontinuous transitions we show that, with suitable scaling, the theta(T)(L) tend to a definitive non-trivial limit as L -> infinity.
引用
收藏
页码:351 / 380
页数:30
相关论文
共 50 条