On the path integral of constrained systems

被引:0
|
作者
Muslih, SI [1 ]
机构
[1] Al Azhar Univ, Dept Phys, Gaza, Palestine, Israel
来源
关键词
Hamiltonian and lagrangian approaches; Hamilton-Jacobi approach; integrable systems; field theories;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Constrained Hamiltonian systems are investigated by using Guler's method. Integration of a set of equations of motion and the action function is discussed. It is shown that the canonical path integral quantization is obtained directly as an integration over the canonical phase-space coordinates without any need to enlarge the initial phase-space by introducing extra- unphysical variables as in the Batalin-Fradkin-Tyutin (BFT) method. The abelian Proca model is analyzed by the two methods.
引用
收藏
页码:240 / 247
页数:8
相关论文
共 50 条
  • [1] THE FEYNMAN PATH INTEGRAL FOR CONSTRAINED SYSTEMS
    BLAU, SK
    [J]. ANNALS OF PHYSICS, 1991, 205 (02) : 392 - 417
  • [2] The Feynman path integral quantization of constrained systems
    Muslih, S
    Guler, Y
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1997, 112 (01): : 97 - 107
  • [3] On the quantization of constrained systems using path integral techniques
    Rabei, EM
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (10): : 1159 - 1165
  • [5] QUANTUM BROWNIAN AND THE CONSTRAINED PATH INTEGRAL
    Boonchui, S.
    Sa-Yakanit, V.
    Palotaidamkerng, P.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (25-26): : 4758 - 4764
  • [6] Path integral representations for a constrained system
    Ohnuki, Y
    [J]. SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2003, : 41 - 54
  • [7] QUANTUM BROWNIAN AND THE CONSTRAINED PATH INTEGRAL
    Boonchui, S.
    Sa-Yakanit, V.
    Palotaidamkerng, P.
    [J]. CONDENSED MATTER THEORIES, VOL 23, 2009, : 470 - +
  • [8] Path integral representations for a system constrained on a manifold
    Ohnuki, Y
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (04): : 1373 - 1388
  • [9] PATH-INTEGRAL IN CONSTRAINED CLASSICAL MECHANICS
    ABRIKOSOV, AA
    [J]. PHYSICS LETTERS A, 1993, 182 (2-3) : 179 - 183
  • [10] PATH INTEGRAL QUANTIZATION OF A NONRELATIVISTIC PARTICLE CONSTRAINED ON A GENERAL HYPERSURFACE
    SHIMIZU, A
    INAMOTO, T
    MIYAZAKI, T
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (08): : 973 - 976