Soar-RL: Integrating reinforcement learning with soar

被引:0
|
作者
Nason, S [1 ]
Laird, JE [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe an architectural modification to Soar that gives a Soar agent the opportunity to learn statistical information about the past success of its actions and utilize this information when selecting an operator. This mechanism serves the same purpose as production utilities in ACT-R, but the implementation is more directly tied to the standard definition of the reinforcement learning (RL) problem. The paper explains our implementation, gives a rationale for adding an RL capability to Soar, and shows results for Soar-RL agents' performance on two tasks.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 50 条
  • [1] Soar-RL: integrating reinforcement learning with soar
    Nason, S
    Laird, JE
    [J]. COGNITIVE SYSTEMS RESEARCH, 2005, 6 (01) : 51 - 59
  • [2] Strategies for affect-controlled action-selection in soar-RL
    Hogewoning, Eric
    Broekens, Joost
    Eggermont, Jeroen
    Bovenkamp, Ernst G. P.
    [J]. NATURE INSPIRED PROBLEM-SOLVING METHODS IN KNOWLEDGE ENGINEERING, PT 2, PROCEEDINGS, 2007, 4528 : 501 - +
  • [3] Learning to soar: Resource-constrained exploration in reinforcement learning
    Chung, Jen Jen
    Lawrance, Nicholas R. J.
    Sukkarieh, Salah
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2015, 34 (02): : 158 - 172
  • [4] Soar, Adam, Soar
    Bowles, Emily
    [J]. LIBRARY JOURNAL, 2019, 144 (01) : 93 - 94
  • [5] Learning to soar in turbulent environments
    Reddy, Gautam
    Celani, Antonio
    Sejnowski, Terrence J.
    Vergassola, Massimo
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (33) : E4877 - E4884
  • [6] Learning Capability: A SOAR AGENT
    Bansal, Nitin
    Rajan, Neha
    Srinivasan
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON ISSUES AND CHALLENGES IN INTELLIGENT COMPUTING TECHNIQUES (ICICT), 2014, : 119 - 122
  • [7] SOAR
    Wyld, Karen
    [J]. MEANJIN, 2021, 80 (04): : 101 - 106
  • [8] Continuing to soar
    Michael D. McGehee
    [J]. Nature Materials, 2014, 13 (9) : 845 - 846
  • [9] SOAR INTO READING
    MURDOCK, AE
    [J]. READING TEACHER, 1987, 41 (02): : 243 - 244
  • [10] Helping Students Soar to Success on Computers: An Investigation of the SOAR Study Method for Computer-Based Learning
    Jairam, Dharmananda
    Kiewra, Kenneth A.
    [J]. JOURNAL OF EDUCATIONAL PSYCHOLOGY, 2010, 102 (03) : 601 - 614