A FUEL MOISTURE CONTENT MONITORING METHODOLOGY BASED ON OPTICAL REMOTE SENSING

被引:0
|
作者
Li, Fan [1 ]
Li, Yuxia [1 ]
Zhang, Cunjie [2 ]
Cheng, Yuan [1 ]
Li, Yuzhen [3 ]
He, Lei [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
[2] China Meteorol Adm, Natl Climate Ctr, Beijing 100191, Peoples R China
[3] ChengDu Software Ind Dev Ctr, Chengdu 610041, Peoples R China
[4] Chengdu Univ Informat Technol, Sch Software Engn, Chengdu 610025, Peoples R China
关键词
Fuel moisture content; Machine learning; MODIS; Extreme learning machine; Extreme gradient boosting; WATER-CONTENT; REFLECTANCE;
D O I
10.1109/IGARSS39084.2020.9323353
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quickly and accurately obtaining fuel moisture content information is of great significance for diagnosing vegetation growth, improving agricultural irrigation efficiency, guiding agricultural production, monitoring the drought conditions of natural communities, and forecasting forest fires. Used the measured fuel moisture content in the southern California sample points and various vegetation indices extracted from MODIS remote sensing satellite images as the dataset for the fuel moisture content retrieving model. In this study, three machine learning methods--extreme learning machine (ELM), gradient boosting decision tree (GBDT), and extreme gradient boosting (XGBoost) were used for the fuel moisture content retrieving model. The results show that these three methods can achieve better accuracy than the traditional machine learning method support vector machine (SVM). The experimental results show that the XGBoost is able to achieve an acceptable accuracy, the average root mean squared error (RMSE), mean absolute error (MAE) and coefficient of correlation (R) were 0.1552, 0.1243, and 0.7423 respectively, which is much better than the other models.
引用
收藏
页码:4634 / 4637
页数:4
相关论文
共 50 条
  • [1] A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing
    Yebra, Marta
    Quan, Xingwen
    Riano, David
    Larraondo, Pablo Rozas
    van Dijk, Albert I. J. M.
    Cary, Geoffrey J.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 212 : 260 - 272
  • [2] Remote sensing quantitative monitoring and analysis of fuel moisture content based on spectral index
    Li, Yuxia
    Yang, Wunian
    Tong, Ling
    Jian, Ji
    Gu, Xingfa
    [J]. Guangxue Xuebao/Acta Optica Sinica, 2009, 29 (05): : 1403 - 1407
  • [3] Remote sensing estimation of fuel moisture content
    Chuvieco, E
    Vaughan, PJ
    Riaño, D
    Cocero, D
    [J]. REMOTE SENSING IN THE 21ST CENTURY: ECONOMIC AND ENVIRONMENTAL APPLICATIONS, 2000, : 329 - 335
  • [4] Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region
    Fan, Lei
    Wigneron, J. -P.
    Xiao, Qing
    Al-Yaari, A.
    Wen, Jianguang
    Martin-StPaul, Nicolas
    Dupuy, J. -L.
    Pimont, Francois
    Al Bitar, A.
    Fernandez-Moran, R.
    Kerr, Y. H.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 205 : 210 - 223
  • [5] Remote Sensing Monitoring of Soil Surface Moisture Content Based on LM Algorithm
    Xu J.
    Wang L.
    Wang Y.
    Zhao Z.
    Han W.
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (06): : 233 - 240
  • [6] MAPPING LIVE FUEL MOISTURE CONTENT AND FLAMMABILITY FOR CONTINENTAL AUSTRALIA USING OPTICAL REMOTE SENSING
    Yebra, M.
    Quan, X.
    Riano, D.
    Larraondo, Rozas P.
    van Dijk, Albert I. J. M.
    Cary, G. J.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5903 - 5906
  • [7] MONITORING LIVE FUEL MOISTURE USING SOIL MOISTURE AND REMOTE SENSING PROXIES
    Qi, Yi
    Dennison, Philip E.
    Spencer, Jessica
    Riano, David
    [J]. FIRE ECOLOGY, 2012, 8 (03): : 71 - 87
  • [8] Monitoring Live Fuel Moisture Using Soil Moisture and Remote Sensing Proxies
    Yi Qi
    Philip E. Dennison
    Jessica Spencer
    David Riaño
    [J]. Fire Ecology, 2012, 8 : 71 - 87
  • [9] An IoT Sensing System for Remote Monitoring the Grain Moisture Content
    Barrettino, Diego
    Gisler, Thomas
    Zumbuhl, Christoph
    Di Battista, Christian
    Kummer, Raphael
    Thalmann, Markus
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [10] Retrieval of fuel moisture content by using radiative transfer models from optical remote sensing data
    Quan X.
    He B.
    Liu X.
    Liao Z.
    Qiu S.
    Yin C.
    [J]. Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (01): : 62 - 77