Frontier estimation in the presence of measurement error with unknown variance

被引:27
|
作者
Kneip, Alois [1 ]
Simar, Leopold [2 ]
Van Keilegom, Ingrid [2 ]
机构
[1] Univ Bonn, Dept Econ, Bonn, Germany
[2] Catholic Univ Louvain, Inst Stat Biostat & Actuarial Sci, B-1348 Louvain La Neuve, Belgium
基金
欧洲研究理事会;
关键词
Deconvolution; Stochastic frontier estimation; Nonparametric estimation; Penalized likelihood; MAXIMUM-LIKELIHOOD; EFFICIENCY SCORES; MOMENT ESTIMATION; HULL ESTIMATORS; DEA ESTIMATORS; MODELS; NOISE; DECONVOLUTION; CONVERGENCE; BOUNDARIES;
D O I
10.1016/j.jeconom.2014.09.012
中图分类号
F [经济];
学科分类号
02 ;
摘要
Frontier estimation appears in productivity analysis. Firm's performance is measured by the distance between its output and an optimal production frontier. Frontier estimation becomes difficult if outputs are measured with noise and most approaches rely on restrictive parametric assumptions. This paper contributes to nonparametric approaches, with unknown frontier and unknown variance of a normally distributed error. We propose a nonparametric method identifying and estimating both quantities simultaneously. Consistency and rate of convergence of our estimators are established, and simulations verify the performance of the estimators for small samples. We illustrate our method with data on American electricity companies. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:379 / 393
页数:15
相关论文
共 50 条
  • [1] Density estimation with normal measurement error with unknown variance
    Meister, A
    STATISTICA SINICA, 2006, 16 (01) : 195 - 211
  • [2] Measurement error models and variance estimation in the presence of rounding error effects
    Burr, T.
    Hamada, M. S.
    Cremers, T.
    Weaver, B. P.
    Howell, J.
    Croft, S.
    Vardeman, S. B.
    ACCREDITATION AND QUALITY ASSURANCE, 2011, 16 (07) : 347 - 359
  • [3] Measurement error models and variance estimation in the presence of rounding error effects
    T. Burr
    M. S. Hamada
    T. Cremers
    B. P. Weaver
    J. Howell
    S. Croft
    S. B. Vardeman
    Accreditation and Quality Assurance, 2011, 16 : 347 - 359
  • [4] Estimation of population variance in successive sampling in presence and absence of measurement error
    Das, Pitambar
    Singh, Garib Nath
    Bandyopadhyay, Arnab
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (14) : 4653 - 4666
  • [5] ESTIMATION IN THE PRESENCE OF MEASUREMENT ERROR
    FULLER, WA
    INTERNATIONAL STATISTICAL REVIEW, 1995, 63 (02) : 121 - 147
  • [6] Estimation error in mean returns and the mean-variance efficient frontier
    Simaan, Majeed
    Simaan, Yusif
    Tang, Yi
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2018, 56 : 109 - 124
  • [7] Density estimation in the presence of heteroscedastic measurement error of unknown type using phase function deconvolution
    Nghiem, Linh
    Potgieter, Cornelis J.
    STATISTICS IN MEDICINE, 2018, 37 (25) : 3679 - 3692
  • [8] Estimation of measurement error variance at specific score levels
    Feldt, LS
    Qualls, AL
    JOURNAL OF EDUCATIONAL MEASUREMENT, 1996, 33 (02) : 141 - 156
  • [9] Finite Population Variance Estimation in Presence of Measurement Errors
    Diana, Giancarlo
    Giordan, Marco
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (23) : 4302 - 4314
  • [10] Density estimation in the presence of heteroscedastic measurement error
    Staudenmayer, John
    Ruppert, David
    Buonaccorsi, John R.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 726 - 736