An interval branch and bound method for global Robust optimization

被引:2
|
作者
Carrizosa, Emilio [1 ]
Messine, Frederic [2 ]
机构
[1] Univ Seville, IMUS Inst Matemat, Seville, Spain
[2] Univ Toulouse, CNRS, LAPLACE, UMR5213,ENSEEIHT Toulouse INP, Toulouse, France
关键词
Robust optimization; Interval arithmetic; Branch and bound;
D O I
10.1007/s10898-021-01010-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we design a Branch and Bound algorithm based on interval arithmetic to address nonconvex robust optimization problems. This algorithm provides the exact global solution of such difficult problems arising in many real life applications. A code was developed in MatLab and was used to solve some robust nonconvex problems with few variables. This first numerical study shows the interest of this approach providing the global solution of such difficult robust nonconvex optimization problems.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 50 条
  • [1] An interval branch and bound method for global Robust optimization
    Emilio Carrizosa
    Frédéric Messine
    [J]. Journal of Global Optimization, 2021, 80 : 507 - 522
  • [2] OPTIMIZATION PROBLEMS WITH INTERVAL UNCERTAINTY: BRANCH AND BOUND METHOD
    Sergienko, I. V.
    Iemets, Ol. O.
    Yemets, Ol. O.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2013, 49 (05) : 673 - 683
  • [3] Optimization problems with interval uncertainty: Branch and bound method
    Sergienko I.V.
    Iemets O.O.
    Yemets O.O.
    [J]. Sergienko, I.V. (aik@public.icyb.kiev.ua), 1600, Springer Science and Business Media, LLC (49): : 673 - 683
  • [4] A branch and bound method for stochastic global optimization
    Norkin, VI
    Pflug, GC
    Ruszczynski, A
    [J]. MATHEMATICAL PROGRAMMING, 1998, 83 (03) : 425 - 450
  • [5] A branch and bound method for stochastic global optimization
    Vladimir I. Norkin
    Georg Ch. Pflug
    Andrzej Ruszczyński
    [J]. Mathematical Programming, 1998, 83 : 425 - 450
  • [6] Interval branch and bound with local sampling for constrained global optimization
    Sun, M
    Johnson, AW
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2005, 33 (01) : 61 - 82
  • [7] Interval Branch and Bound with Local Sampling for Constrained Global Optimization
    M. Sun
    A.W. Johnson
    [J]. Journal of Global Optimization, 2005, 33 : 61 - 82
  • [8] On estimating workload in interval branch-and-bound global optimization algorithms
    José L. Berenguel
    L. G. Casado
    I. García
    Eligius M. T. Hendrix
    [J]. Journal of Global Optimization, 2013, 56 : 821 - 844
  • [9] Branch-and-bound interval global optimization on shared memory multiprocessors
    Casado, L. G.
    Martinez, J. A.
    Garcia, I.
    Hendrix, E. M. T.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (05): : 689 - 701
  • [10] Optimal Multisections in Interval Branch-and-Bound Methods of Global Optimization
    Jean-Louis Lagouanelle
    Gérard Soubry
    [J]. Journal of Global Optimization, 2004, 30 : 23 - 38