A spectral characterization of the Delaunay triangulation

被引:10
|
作者
Chen, Renjie [2 ]
Xu, Yin [2 ]
Gotsman, Craig [1 ]
Liu, Ligang [2 ]
机构
[1] Technion Israel Inst Technol, Fac Comp Sci, IL-32000 Haifa, Israel
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Delaunay triangulation; Laplacian; Spectrum; Dirichlet energy; PROPERTY;
D O I
10.1016/j.cagd.2010.02.002
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Delaunay triangulation of a planar point set is a fundamental construct in computational geometry. A simple algorithm to generate it is based on flips of diagonal edges in convex quads. We characterize the effect of a single edge flip in a triangulation on the geometric Laplacian of the triangulation, which leads to a simpler and shorter proof of a theorem of Rippa that the Dirichlet energy of any piecewise-linear scalar function on a triangulation obtains its minimum on the Delaunay triangulation. Using Rippa's theorem, we provide a spectral characterization of the Delaunay triangulation, namely that the spectrum of the geometric Laplacian is minimized on this triangulation. This spectral theorem then leads to a simpler proof of a theorem of Musin that the harmonic index also obtains its minimum on the Delaunay triangulation. (C) 2010 Elsevier BM. All rights reserved.
引用
下载
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [1] Delaunay Triangulation and Tores Triangulation
    Grigis, Alain
    GEOMETRIAE DEDICATA, 2009, 143 (01) : 81 - 88
  • [2] Delaunay triangulation benchmarks
    Spelic, Denis
    Novak, Franc
    Zalik, Borut
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2008, 59 (01): : 49 - 52
  • [3] Delaunay triangulation of surfaces
    Kucwaj, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 487 - 488
  • [4] PARALLELIZATION OF THE DELAUNAY TRIANGULATION
    Krybus, D.
    Patzak, B.
    ENGINEERING MECHANICS 2011, 2011, : 331 - 334
  • [5] Delaunay triangulation of surfaces
    Z Angew Math Mech ZAMM, Suppl 3 (487):
  • [6] Delaunay Triangulation of Manifolds
    Boissonnat, Jean-Daniel
    Dyer, Ramsay
    Ghosh, Arijit
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (02) : 399 - 431
  • [7] Delaunay Triangulation of Manifolds
    Jean-Daniel Boissonnat
    Ramsay Dyer
    Arijit Ghosh
    Foundations of Computational Mathematics, 2018, 18 : 399 - 431
  • [8] Hexagonal Delaunay Triangulation
    Sussner, Gerd
    Greiner, Guenther
    PROCEEDINGS OF THE 18TH INTERNATIONAL MESHING ROUNDTABLE, 2009, : 519 - +
  • [9] Constrained Delaunay triangulation using Delaunay visibility
    Yang, Yi-Jun
    Zhang, Hui
    Yong, Jun-Hai
    Zeng, Wei
    Paul, Jean-Claude
    Sun, Jiaguang
    ADVANCES IN VISUAL COMPUTING, PT 1, 2006, 4291 : 682 - 691
  • [10] The employment of regular triangulation for constrained Delaunay triangulation
    Maur, P
    Kolingerová, I
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 198 - 206