Identifying type II strongly lensed gravitational-wave images in third-generation gravitational-wave detectors

被引:37
|
作者
Wang, Yijun [1 ]
Lo, Rico K. L. [1 ]
Li, Alvin K. Y. [1 ]
Chen, Yanbei [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
LENSING OPTICAL DEPTHS; STELLAR-MASS; BINARIES; SIGNATURES; EVOLUTION; GALAXIES; SEARCH;
D O I
10.1103/PhysRevD.103.104055
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Strong gravitational lensing is a gravitational wave (GW) propagation effect that influences the inferred GW source parameters and the cosmological environment. Identifying strongly lensed GW images is challenging as waveform amplitude magnification is degenerate with a shift in the source intrinsic mass and redshift. However, even in the geometric-optics limit, type II strongly lensed images cannot be fully matched by type I (or unlensed) waveform templates, especially with large binary mass ratios and orbital inclination angles. We propose to use this mismatch to distinguish individual type II images. Using planned noise spectra of Cosmic Explorer, Einstein Telescope and LIGO Voyager, we show that a significant fraction of type II images can be distinguished from unlensed sources, given sufficient SNR (similar to 30). Incorporating models on GW source population and lens population, we predict that the yearly detection rate of lensed GW sources with detectable type II images is 172.2, 118.2 and 27.4 for CE, ET and LIGO Voyager, respectively. Among these detectable events, 33.1%, 7.3% and 0.22% will be distinguishable via their type II images with a log Bayes factor larger than 10. We conclude that such distinguishable events are likely to appear in the third-generation detector catalog; our strategy will significantly supplement existing strong lensing search strategies.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A vertical accelerometer for cryogenics implementation in third-generation gravitational-wave detectors
    Frasconi, F.
    Majorana, E.
    Naticchioni, L.
    Paoletti, F.
    Perciballi, M.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2014, 25 (01)
  • [2] Identifying strongly lensed gravitational waves with the third-generation detectors
    Gao, Zijun
    Liao, Kai
    Yang, Lilan
    Zhu, Zong-Hong
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (01) : 682 - 690
  • [3] Identifying strongly lensed gravitational waves with the third-generation detectors
    Gao, Zijun
    Liao, Kai
    Yang, Lilan
    Zhu, Zong-Hong
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, : 682 - 690
  • [4] Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors
    Wu, C.
    Mandic, V.
    Regimbau, T.
    PHYSICAL REVIEW D, 2012, 85 (10):
  • [5] Bayesian statistical framework for identifying strongly lensed gravitational-wave signals
    Lo, Rico K. L.
    Hernandez, Ignacio Magana
    PHYSICAL REVIEW D, 2023, 107 (12)
  • [6] A Sagnac interferometer as a gravitational-wave third-generation detector
    Voronchev, N. V.
    Danilishin, Sh. L.
    Khalili, F. Ya.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2014, 69 (06) : 519 - 528
  • [7] A Sagnac interferometer as a gravitational-wave third-generation detector
    N. V. Voronchev
    Sh. L. Danilishin
    F. Ya. Khalili
    Moscow University Physics Bulletin, 2014, 69 : 519 - 528
  • [8] Strong-lensing cosmography using third-generation gravitational-wave detectors
    Jana, Souvik
    Kapadia, Shasvath J.
    Venumadhav, Tejaswi
    More, Surhud
    Ajith, Parameswaran
    arXiv,
  • [9] Strong-lensing cosmography using third-generation gravitational-wave detectors
    Jana, Souvik
    Kapadia, Shasvath
    Venumadhav, Tejaswi
    More, Surhud
    Ajith, Parameswaran
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (24)
  • [10] Prospects of constraining f (T) gravity with the third-generation gravitational-wave detectors
    Chen, Ran
    Wang, Yi-Ying
    Zu, Lei
    Fan, Yi-Zhong
    PHYSICAL REVIEW D, 2024, 109 (02)