CRITICAL EXPONENTS AND THE PSEUDO-ε-EXPANSION

被引:8
|
作者
Nikitina, M. A. [1 ,2 ]
Sokolov, A. I. [1 ]
机构
[1] St Petersburg State Univ, Fock Res Inst Phys, St Petersburg 199034, Russia
[2] St Petersburg Natl Res Univ Informat Technol Mech, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
three-dimensional O(n)-symmetric model; critical exponent; pseudo-epsilon-expansion; Pade approximant; numerical result; VECTOR SPIN MODELS; CRITICAL INDEXES; DIMENSIONS;
D O I
10.1134/S0040577916020057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the pseudo-epsilon-expansions (tau-series) for the critical exponents of a lambda phi(4)-type three-dimensional O(n)-symmetric model obtained on the basis of six-loop renormalization-group expansions. We present numerical results in the physically interesting cases n = 1, n = 2, n = 3, and n = 0 and also for 4 <= n <= 32 to clarify the general properties of the obtained series. The pseudo-epsilon-expansions or the exponents. and a have coefficients that are small in absolute value and decrease rapidly, and direct summation of the tau-series therefore yields quite acceptable numerical estimates, while applying the Pade approximants allows obtaining high-precision results. In contrast, the coefficients of the pseudo-epsilon-expansion of the scaling correction exponent omega do not exhibit any tendency to decrease at physical values of n. But the corresponding series are sign-alternating, and to obtain reliable numerical estimates, it also suffices to use simple Pade approximants in this case. The pseudo-epsilon-expansion technique can therefore be regarded as a distinctive resummation method converting divergent renormalization-group series into expansions that are computationally convenient.
引用
收藏
页码:192 / 204
页数:13
相关论文
共 50 条
  • [1] Critical exponents and the pseudo-є-expansion
    M. A. Nikitina
    A. I. Sokolov
    [J]. Theoretical and Mathematical Physics, 2016, 186 : 192 - 204
  • [2] Pseudo-ε expansion and critical exponents of superfluid helium
    Sokolov, A. I.
    Nikitina, M. A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 : 177 - 181
  • [3] Critical exponents in two dimensions and pseudo-ε expansion
    Nikitina, M. A.
    Sokolov, A. I.
    [J]. PHYSICAL REVIEW E, 2014, 89 (04):
  • [4] Fisher exponent from pseudo-∈expansion
    Sokolov, A. I.
    Nikitina, M. A.
    [J]. PHYSICAL REVIEW E, 2014, 90 (01):
  • [5] Harmonic crossover exponents in O(n) models with the pseudo-ε expansion approach -: art. no. 064416
    Calabrese, P
    Parruccini, P
    [J]. PHYSICAL REVIEW B, 2005, 71 (06):
  • [6] Pseudo-∈expansion and renormalized coupling constants at criticality
    Sokolov, A. I.
    Nikitina, M. A.
    [J]. PHYSICAL REVIEW E, 2014, 89 (05):
  • [7] Pseudo-ε-expansion and the two-dimensional Ising model
    Sokolov, AI
    [J]. PHYSICS OF THE SOLID STATE, 2005, 47 (11) : 2144 - 2147
  • [8] Pseudo-ε-expansion and the two-dimensional Ising model
    A. I. Sokolov
    [J]. Physics of the Solid State, 2005, 47 : 2144 - 2147
  • [9] PSEUDO-
    WILSON, RA
    HOCHERG, MN
    [J]. JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1965, 194 (08): : 937 - &
  • [10] CRITICAL EXPONENTS WITHOUT THE EPSILON EXPANSION
    ALFORD, M
    [J]. PHYSICS LETTERS B, 1994, 336 (02) : 237 - 242