AN INNOVATIVE TOOL BASED ON MACHINE LEARNING TECHNIQUES PREDICTS NASH PATIENTS IN REAL-WORLD SETTINGS

被引:0
|
作者
Huang, J. [1 ]
Doherty, M.
Regnier, S. [2 ]
Capkun, G. [2 ]
Balp, M. [2 ]
Ye, Q. [1 ]
Janssens, N. [2 ]
Lopez, P. [2 ]
Pedrosa, M. [2 ]
Schattenberg, Joern [3 ]
机构
[1] Zs, Princeton, NJ USA
[2] Novartis Pharma AG, Basel, Switzerland
[3] Univ Med Ctr Mainz, Dept Med, Mainz, Germany
关键词
D O I
暂无
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
190
引用
收藏
页码:124A / 124A
页数:1
相关论文
共 50 条
  • [1] NASHmap: clinical utility of a machine learning model to identify patients at risk of NASH in real-world settings
    Schattenberg, Joern M.
    Balp, Maria-Magdalena
    Reinhart, Brenda
    Tietz, Andreas
    Regnier, Stephane A.
    Capkun, Gorana
    Ye, Qin
    Loeffler, Juergen
    Pedrosa, Marcos C.
    Docherty, Matt
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] NASHmap: clinical utility of a machine learning model to identify patients at risk of NASH in real-world settings
    Jörn M. Schattenberg
    Maria-Magdalena Balp
    Brenda Reinhart
    Andreas Tietz
    Stephane A. Regnier
    Gorana Capkun
    Qin Ye
    Jürgen Loeffler
    Marcos C. Pedrosa
    Matt Docherty
    [J]. Scientific Reports, 13
  • [3] Increased Identification of NASH among Diabetic and Nondiabetic Patients through Machine Learning in Real-World Settings
    Docherty, Matt
    Tietz, Andreas
    Regnier, Stephane A.
    Balp, Maria-Magdalena
    Capkun, Gorana
    Loeffler, Juergen
    Pedrosa, Marcos
    Schattenberg, Joern M.
    [J]. DIABETES, 2020, 69
  • [4] PREDICTING NASH PATIENTS USING INNOVATIVE MACHINE LEARNING TECHNIQUES
    Docherty, M.
    Huang, J.
    Regnier, S. A.
    Capkun, G.
    Balp, M. M.
    Ye, Q.
    Janssens, N.
    Lopez, P.
    Pedrosa, M.
    Schattenberg, J. M.
    [J]. VALUE IN HEALTH, 2019, 22 : S595 - S595
  • [5] Predicting quetiapine dose in patients with depression using machine learning techniques based on real-world evidence
    Yupei Hao
    Jinyuan Zhang
    Jing Yu
    Ze Yu
    Lin Yang
    Xin Hao
    Fei Gao
    Chunhua Zhou
    [J]. Annals of General Psychiatry, 23
  • [6] Predicting quetiapine dose in patients with depression using machine learning techniques based on real-world evidence
    Hao, Yupei
    Zhang, Jinyuan
    Yu, Jing
    Yu, Ze
    Yang, Lin
    Hao, Xin
    Gao, Fei
    Zhou, Chunhua
    [J]. ANNALS OF GENERAL PSYCHIATRY, 2024, 23 (01)
  • [7] USING MACHINE LEARNING TECHNIQUES IN REAL-WORLD MOBILE ROBOTS
    KAISER, M
    KLINGSPOR, V
    MILLAN, JDR
    ACCAME, M
    WALLNER, F
    DILLMANN, R
    [J]. IEEE EXPERT-INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1995, 10 (02): : 37 - 45
  • [8] Predicting plasma concentration of quetiapine in patients with depression using machine learning techniques based on real-world evidence
    Yang, Lin
    Zhang, Jinyuan
    Yu, Jing
    Yu, Ze
    Hao, Xin
    Gao, Fei
    Zhou, Chunhua
    [J]. EXPERT REVIEW OF CLINICAL PHARMACOLOGY, 2023, 16 (08) : 741 - 750
  • [9] Predicting Blood Concentration of Tacrolimus in Patients With Autoimmune Diseases Using Machine Learning Techniques Based on Real-World Evidence
    Zheng, Ping
    Yu, Ze
    Li, Liren
    Liu, Shiting
    Lou, Yan
    Hao, Xin
    Yu, Peng
    Lei, Ming
    Qi, Qiaona
    Wang, Zeyuan
    Gao, Fei
    Zhang, Yuqing
    Li, Yilei
    [J]. FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [10] Predicting Lapatinib Dose Regimen Using Machine Learning and Deep Learning Techniques Based on a Real-World Study
    Yu, Ze
    Ye, Xuan
    Liu, Hongyue
    Li, Huan
    Hao, Xin
    Zhang, Jinyuan
    Kou, Fang
    Wang, Zeyuan
    Wei, Hai
    Gao, Fei
    Zhai, Qing
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12