Accurate differentiation of renal tumour pathological subtypes using a machine learning model of epigenetic markers

被引:0
|
作者
Rossi, S. [1 ]
Newsham, I. [1 ]
Pita, S. [1 ]
Park, G. [1 ]
Lach, R. [1 ]
Babbage, A. [1 ]
Smith, C. [1 ]
Brennan, K. [2 ]
Mitchell, T. [3 ]
Warren, A. [4 ]
Gevaert, O. [2 ]
Leppert, J. [5 ]
Stewart, G. D. [3 ]
Massie, C. E. [1 ]
Samarajiwa, S. A. [1 ]
机构
[1] Univ Cambridge, Hutchison MRC Res Inst, Dept Oncol, Cambridge, England
[2] Stanford Univ, Dept Med, BMIR, Stanford, CA 94305 USA
[3] Univ Cambridge, Dept Urol, Cambridge, England
[4] Univ Cambridge, Dept Pathol, Cambridge, England
[5] Stanford Univ, Dept Urol, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
P0594
引用
收藏
页码:S811 / S811
页数:1
相关论文
共 50 条
  • [1] ACCURATE DIFFERENTIATION OF PATHOLOGICAL SUBTYPES OF RENAL TUMOUR BY APPLYING A MACHINE LEARNING MODEL TO EPIGENETIC MARKERS
    Rossi, Sabrina
    Newsham, Izzy
    Pita, Sara
    Park, Gahee
    Lach, Radolsaw
    Babbage, Anne
    Smith, Christopher
    Brennan, Kevin
    Zheng, Hong
    Mitchell, Tom
    Warren, Anne
    Leppert, John
    Gevaert, Olivier
    Stewart, Grant
    Massie, Charles
    Samarajiwa, Shamith
    JOURNAL OF UROLOGY, 2021, 206 : E846 - E846
  • [2] Differentiation of DCM Subtypes by using Cardiac MRI and Machine Learning
    von Knobelsdorff, Florian
    KARDIOLOGIE, 2022, 16 (05): : 353 - 355
  • [3] Epigenetic Target Fishing with Accurate Machine Learning Models
    Sanchez-Cruz, Norberto
    Medina-Franco, Jose L.
    JOURNAL OF MEDICINAL CHEMISTRY, 2021, 64 (12) : 8208 - 8220
  • [4] Accurate detection of benign and malignant renal tumor subtypes with MethylBoostER: An epigenetic marker-driven learning framework
    Rossi, Sabrina H.
    Newsham, Izzy
    Pita, Sara
    Brennan, Kevin
    Park, Gahee
    Smith, Christopher G.
    Lach, Radoslaw P.
    Mitchell, Thomas
    Huang, Junfan
    Babbage, Anne
    Warren, Anne Y.
    Leppert, John T.
    Stewart, Grant D.
    Gevaert, Olivier
    Massie, Charles E.
    Samarajiwa, Shamith A.
    SCIENCE ADVANCES, 2022, 8 (39)
  • [5] Shorten Bipolarity Checklist for the Differentiation of Subtypes of Bipolar Disorder Using Machine Learning
    Feng, Chaonan
    Gao, Huimin
    Ling, Xuefeng B.
    Ji, Jun
    Ma, Yantao
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018), 2018, : 162 - 166
  • [6] The Machine Learning Model for Distinguishing Pathological Subtypes of Non-Small Cell Lung Cancer
    Zhao, Hongyue
    Su, Yexin
    Wang, Mengjiao
    Lyu, Zhehao
    Xu, Peng
    Jiao, Yuying
    Zhang, Linhan
    Han, Wei
    Tian, Lin
    Fu, Peng
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [7] Accurate prediction of colorectal cancer diagnosis using machine learning based on immunohistochemistry pathological images
    Ning, Bobin
    Chi, Jimei
    Meng, Qingyu
    Jia, Baoqing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomic Model for Discrimination of Pathological Subtypes of Craniopharyngioma
    Huang, Zhou-San
    Xiao, Xiang
    Li, Xiao-Dan
    Mo, Hai-Zhu
    He, Wen-Le
    Deng, Yao-Hong
    Lu, Li-Jun
    Wu, Yuan-Kui
    Liu, Hao
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (05) : 1541 - 1550
  • [9] ACCURATE AUTOMATED SLEEP STAGING OF NARCOLEPTIC PATIENTS USING A MACHINE LEARNING MODEL
    Cakir, Ahmet
    Josephs, David
    Kleinschmidt, Dave
    Pathmanathan, Jay
    Donoghue, Jacob
    Chan, Alexander
    SLEEP, 2024, 47 : A283 - A283
  • [10] Accurate prediction of band gap of materials using stacking machine learning model
    Wang, Teng
    Zhang, Kefei
    The, Jesse
    Yu, Hesheng
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 201