Impedance modelling of porous electrode structures in polymer electrolyte membrane fuel cells

被引:52
|
作者
Heinzmann, Marcel [1 ]
Weber, Andre [1 ]
Ivers-Tiffee, Ellen. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM WET, Adenauerring 20b, D-76131 Karlsruhe, Germany
关键词
Polymer electrolyte membrane fuel cell; Electrochemical impedance spectroscopy; Distribution of relaxation times; Equivalent circuit model; Transmission line model; Ionic conductivity; OXYGEN REDUCTION REACTION; CATHODE CATALYST LAYER; ELECTROCHEMICAL IMPEDANCE; CHARGE-TRANSFER; SPECTROSCOPY; PARAMETERS; RESISTANCE; KINETICS; DECONVOLUTION; SPECTRA;
D O I
10.1016/j.jpowsour.2019.227279
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical Impedance Spectroscopy (EIS) is a suitable tool for identifying the performance-related polarization processes in a polymer electrolyte membrane fuel cell. A physically meaningful impedance model is needed when drawing conclusions about further cell improvement. This study focuses on, the characterization of the porous electrode structure by applying a transmission line model (TLM) to the measured spectra. The fitting procedure is supported by the distribution of relaxation times (DRT) method enabling a separation of loss processes by their individual time constants. We are able to separate and quantify (i) the gas diffusion in the porous media (2-10 Hz), (ii) the charge transfer resistance at the Pt catalyst (2-200 Hz), and (iii) the ionic transport resistance in the catalyst layer (300-30,000 Hz), across a broad range of operating conditions (current density, relative humidity, gas compositions). The TLM approach directly reveals the electrodes' transport and reaction properties, e.g. ionic conductivity and the Tafel slope. Under high electrical load the ionic transport losses in the catalyst layer contribute more to polarization than expected. Interestingly, the oxygen reduction reaction is found to be describable with a single, current-independent Tafel slope.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] PREPARATION OF POROUS-ELECTRODES AND LAMINATED ELECTRODE-MEMBRANE STRUCTURES FOR POLYMER ELECTROLYTE FUEL-CELLS (PEFC)
    BOLWIN, K
    GULZOW, E
    BEVERS, D
    SCHNURNBERGER, W
    [J]. SOLID STATE IONICS, 1995, 77 : 324 - 330
  • [2] Impedance analysis of porous electrode structures in batteries and fuel cells
    Weber, Andre
    [J]. TM-TECHNISCHES MESSEN, 2021, 88 (01) : 1 - 16
  • [3] Hybrid electrode effects on polymer electrolyte membrane fuel cells
    Jung, Juhae
    Kwon, Minki
    Kim, Hae-Ri
    Kim, Junbom
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (02) : 966 - 973
  • [4] Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy
    Wagner, N
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 2002, 32 (08) : 859 - 863
  • [5] Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy
    N. Wagner
    [J]. Journal of Applied Electrochemistry, 2002, 32 : 859 - 863
  • [6] Impedance based performance model for polymer electrolyte membrane fuel cells
    Heinzmann, Marcel
    Weber, Andre
    [J]. JOURNAL OF POWER SOURCES, 2023, 558
  • [7] Advanced impedance modeling for micropatterned polymer electrolyte membrane fuel cells
    Tanaka, Akihisa
    Nagato, Keisuke
    Tomizawa, Morio
    Inoue, Gen
    Nagai, Kohei
    Nakao, Masayuki
    [J]. JOURNAL OF POWER SOURCES, 2022, 545
  • [8] Impedance response of the proton exchange membrane in polymer electrolyte fuel cells
    Schneider, I. A.
    Bayer, M. H.
    Wokaun, A.
    Scherer, G. G.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (08) : B783 - B792
  • [9] Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells
    Wittstadt, U
    Wagner, E
    Jungmann, T
    [J]. JOURNAL OF POWER SOURCES, 2005, 145 (02) : 555 - 562
  • [10] Study of a porous membrane humidification method in polymer electrolyte fuel cells
    Ramya, K.
    Sreenivas, J.
    Dhathathreyan, K. S.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (22) : 14866 - 14872