The lattice Boltzmann model for the second-order Benjamin-Ono equations

被引:21
|
作者
Lai, Huilin [1 ]
Ma, Changfeng [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
Boltzmann equation; lattice Boltzmann methods; computational fluid dynamics; PARTIAL-DIFFERENTIAL-EQUATIONS; GROSS-KROOK SIMULATIONS; RECTANGULAR ENCLOSURE; BOUSSINESQ EQUATION; EVOLUTION-EQUATIONS; NATURAL-CONVECTION; NUMERICAL-SOLUTION; SOLITONS;
D O I
10.1088/1742-5468/2010/04/P04011
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin-Ono equation. With the Taylor expansion and the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] MULTIPLE SOLITON SOLUTIONS OF SECOND-ORDER BENJAMIN-ONO EQUATION
    Najafi, M.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2012, 2 (01): : 94 - 100
  • [2] Exact Soliton Solutions for Second-Order Benjamin-Ono Equation
    Taghizadeh, Nasir
    Mirzazadeh, Mohammad
    Farahrooz, Foroozan
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2011, 6 (01): : 384 - 395
  • [3] The application of trigonal curve theory to the second-order Benjamin-Ono hierarchy
    Guoliang He
    Lin He
    [J]. Advances in Difference Equations, 2014
  • [4] The application of trigonal curve theory to the second-order Benjamin-Ono hierarchy
    He, Guoliang
    He, Lin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [5] INTERACTING BENJAMIN-ONO EQUATIONS
    YONEYAMA, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (10) : 3313 - 3320
  • [6] On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations
    Kenig, CE
    Koenig, KD
    [J]. MATHEMATICAL RESEARCH LETTERS, 2003, 10 (5-6) : 879 - 895
  • [7] A lattice Boltzmann model for the compressible Euler equations with second-order accuracy
    Zhang, Jianying
    Yan, Guangwu
    Shi, Xiubo
    Dong, Yinfeng
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 60 (01) : 95 - 117
  • [8] THE BENJAMIN-ONO AND RELATED EQUATIONS [1]
    CASE, KM
    [J]. PHYSICA D, 1981, 3 (1-2): : 185 - 192
  • [9] ON DECAY OF THE SOLUTIONS FOR THE DISPERSION GENERALIZED-BENJAMIN-ONO AND BENJAMIN-ONO EQUATIONS
    Cunha, Alysson
    [J]. arXiv, 2022,
  • [10] The Peierls-Nabarro and Benjamin-Ono equations
    Toland, JF
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 145 (01) : 136 - 150