Markov Chain Monte Carlo Methods for Parameter Estimation in Multidimensional Continuous Time Markov Switching Models

被引:15
|
作者
Hahn, Markus [2 ]
Fruehwirth-Schnatter, Sylvia [1 ]
Sass, Joern [3 ]
机构
[1] Johannes Kepler Univ Linz, Dept Appl Stat & Econometr, A-4040 Linz, Austria
[2] Johann Radon Inst Computat & Appl Math, Linz, Austria
[3] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany
关键词
C11; C13; C15; C32; Bayesian inference; data augmentation; hidden Markov model; switching diffusion; MAXIMUM-LIKELIHOOD; BAYESIAN-INFERENCE; STOCK; DRIFT;
D O I
10.1093/jjfinec/nbp026
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider a multidimensional, continuous-time model where the observation process is a diffusion with drift and volatility coefficients being modeled as continuous-time, finite-state Markov chains with a common state process. For the econometric estimation of the states for drift and volatility and the rate matrix of the underlying Markov chain, we develop both an exact continuous time and an approximate discrete-time Markov chain Monte Carlo (MCMC) sampler and compare these approaches with maximum likelihood (ML) estimation. For simulated data, MCMC outperforms ML estimation for difficult cases like high rates. Finally, for daily stock index quotes from Argentina, Brazil, Mexico, and the USA we identify four states differing not only in the volatility of the various assets but also in their correlation.
引用
收藏
页码:88 / 121
页数:34
相关论文
共 50 条
  • [1] Parameter Estimation in Continuous Time Markov Switching Models: A Semi-Continuous Markov Chain Monte Carlo Approach
    Hahn, Markus
    Sass, Joern
    [J]. BAYESIAN ANALYSIS, 2009, 4 (01): : 63 - 84
  • [2] Markov chain Monte Carlo methods for switching diffusion models
    Liechty, JC
    Roberts, GO
    [J]. BIOMETRIKA, 2001, 88 (02) : 299 - 315
  • [3] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    [J]. IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [4] Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models
    Frühwirth-Schnatter, S
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 194 - 209
  • [5] Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution
    Jiang, H.
    Xie, M.
    Tang, L. C.
    [J]. JOURNAL OF APPLIED STATISTICS, 2008, 35 (06) : 647 - 658
  • [6] Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
    Kohs, Lukas
    Alt, Bastian
    Koeppl, Heinz
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [7] Bayesian estimation of NIG models via Markov chain Monte Carlo methods
    Karlis, D
    Lillestöl, J
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2004, 20 (04) : 323 - 338
  • [8] Using Markov-switching models with Markov chain Monte Carlo inference methods in agricultural commodities trading
    Oscar V. De la Torre-Torres
    Dora Aguilasocho-Montoya
    José Álvarez-García
    Biagio Simonetti
    [J]. Soft Computing, 2020, 24 : 13823 - 13836
  • [9] Using Markov-switching models with Markov chain Monte Carlo inference methods in agricultural commodities trading
    De la Torre-Torres, Oscar, V
    Aguilasocho-Montoya, Dora
    Alvarez-Garcia, Jose
    Simonetti, Biagio
    [J]. SOFT COMPUTING, 2020, 24 (18) : 13823 - 13836
  • [10] Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo
    Bolt, DM
    Lall, VF
    [J]. APPLIED PSYCHOLOGICAL MEASUREMENT, 2003, 27 (06) : 395 - 414